Modeling Supercritical Carbon Dioxide Injection in Heterogneous Porous Media
Skip to main content
eScholarship
Open Access Publications from the University of California

Modeling Supercritical Carbon Dioxide Injection in Heterogneous Porous Media

Abstract

We investigate the physical processes that occur during the sequestration of carbon dioxide (CO2) in liquid-saturated, brine-bearing geologic formations using the numerical simulator TOUGH2. CO2 is injected in a supercritical state that has a much lower density and viscosity than the liquid brine it displaces. In situ, the supercritical CO2 forms a gas-like phase, and also partially dissolves in the aqueous phase, creating a multi-phase, multi-component environment that shares many important features with the vadose zone. The flow and transport simulations employ an equation of state package that treats a two-phase (liquid, gas), three-component (water, salt, CO2) system. Chemical reactions between CO2 and rock minerals that could potentially contribute to mineral trapping of CO2 are not included. The geological setting considered is a fluvial/deltaic formation that is strongly heterogeneous, making preferential flow a significant effect, especially when coupled with the strong buoyancy forces acting on the gas-like CO2 plume. Key model development issues include vertical and lateral grid resolution, grid orientation effects, and the choice of characteristic curves.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View