Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Facet-selective etching trajectories of individual semiconductor nanocrystals


The size and shape of semiconductor nanocrystals govern their optical and electronic properties. Liquid cell transmission electron microscopy (LCTEM) is an emerging tool that can directly visualize nanoscale chemical transformations and therefore inform the precise synthesis of nanostructures with desired functions. However, it remains difficult to controllably investigate the reactions of semiconductor nanocrystals with LCTEM, because of the highly reactive environment formed by radiolysis of liquid. Here, we harness the radiolysis processes and report the single-particle etching trajectories of prototypical semiconductor nanomaterials with well-defined crystalline facets. Lead selenide nanocubes represent an isotropic structure that retains the cubic shape during etching via a layer-by-layer mechanism. The anisotropic arrow-shaped cadmium selenide nanorods have polar facets terminated by either cadmium or selenium atoms, and the transformation trajectory is driven by etching the selenium-terminated facets. LCTEM trajectories reveal how nanoscale shape transformations of semiconductors are governed by the reactivity of specific facets in liquid environments.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View