Skip to main content
Download PDF
- Main
Monte Carlo approaches to hidden Markov model state estimation
- Sollberger, Derek
- Advisor(s): Bhat, Harish
Abstract
In this paper, we develop a Monte Carlo approach for hidden Markov model (HMM) order estimation-finding the underlying number of states in a hidden Markov model. We compare predictions and true observations using classification rates, correlations, and ROC curves as statistical estimators. Tests are run on both artificail data in a controlled experiment and on real-world data sets--Abstract.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%