Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

On-Demand Fully Enclosed Superhydrophobic-Optofluidic Devices Enabled by Microstereolithography.

Abstract

Superhydrophobic surface-based optofluidics have been introduced to biosensors and unconventional optics with unique advantages, such as low light loss and power consumption. However, most of these platforms were made with planar-like microstructures and nanostructures, which may cause bonding issues and result in significant waveguide loss. Here, we introduce a fully enclosed superhydrophobic-based optofluidics system, enabled by a one-step microstereolithography procedure. Various microstructured cladding designs with a feature size down to 100 μm were studied and a T-type overhang design exhibits the lowest optical loss, regardless of the excitation wavelength. Surprisingly, the optical loss of superhydrophobic-based optofluidics is not solely decided by the solid area fraction at the solid/water/air interface, but also the cross-section shape and the effective cladding layer composition. We show that this fully enclosed optofluidic system can be used for CRISPR-labeled quantum dot quantification, intended for in vitro and in vivo CRISPR therapeutics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View