Skip to main content
Download PDF
- Main
A Single-Nucleotide Polymorphism in CYP2B6 Leads to >3-Fold Increases in Efavirenz Concentrations in Plasma and Hair Among HIV-Infected Women
Published Web Location
https://doi.org/10.1093/infdis/jis508Abstract
Background
Efavirenz exhibits marked interindividual variability in plasma levels and toxicities. Prior pharmacogenetic studies usually measure exposure via single plasma levels, examine limited numbers of polymorphisms, and rarely model multiple contributors. We analyzed numerous genetic and nongenetic factors impacting short-term and long-term exposure in a large heterogeneous population of human immunodeficiency virus (HIV)-infected women.Methods
We performed 24-hour intensive pharmacokinetic studies in 111 women receiving efavirenz under actual-use conditions and calculated the area-under-the-concentration-time curve (AUC) to assess short-term exposure; the efavirenz concentration in hair was measured to estimate long-term exposure. A total of 182 single-nucleotide polymorphisms (SNPs) and 45 haplotypes in 9 genes were analyzed in relationship to exposure by use of multivariate models that included a number of nongenetic factors.Results
Efavirenz AUCs increased 1.26-fold per doubling of the alanine aminotransferase level and 1.23-fold with orange and/or orange juice consumption. Individuals with the CYP2B6 516TT genotype displayed 3.5-fold increases in AUCs and 3.2-fold increases in hair concentrations, compared with individuals with the TG/GG genotype. Another SNP in CYP2B6 (983TT) and a p-glycoprotein haplotype affected AUCs without substantially altering long-term exposure.Conclusions
This comprehensive pharmacogenomics study showed that individuals with the CYP2B6 516TT genotype displayed >3-fold increases in both short-term and long-term efavirenz exposure, signifying durable effects. Pharmacogenetic testing combined with monitoring of hair levels may improve efavirenz outcomes and reduce toxicities.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%