CLASSY. IX. The Chemical Evolution of the Ne, S, Cl, and Ar Elements
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

CLASSY. IX. The Chemical Evolution of the Ne, S, Cl, and Ar Elements

Published Web Location

https://iopscience.iop.org/article/10.3847/1538-4357/ad34cf/pdf
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Abstract: To study the chemical evolution across cosmic epochs, we investigate Ne, S, Cl, and Ar abundance patterns in the Cosmic Origins Spectrograph Legacy Archive Spectroscopic SurveY (CLASSY). CLASSY comprises local star-forming galaxies (SFGs; 0.02 < z < 0.18) with enhanced star formation rates, making them strong analogues to high-z SFGs. With direct measurements of electron temperature, we derive accurate ionic abundances for all elements and assess ionization correction factors (ICFs) to account for unseen ions and derive total abundances. We find Ne/O, S/O, Cl/O, and Ar/O exhibit constant trends with gas-phase metallicity for 12+log(O/H) < 8.5 but significant correlation for Ne/O and Ar/O with metallicity for 12+log(O/H) > 8.5, likely due to ICFs. Thus, the applicability of the ICFs to integrated spectra of galaxies could bias results, underestimating true abundance ratios. Using CLASSY as a local reference, we assess the evolution of Ne/O, S/O, and Ar/O in galaxies at z > 3, finding no cosmic evolution of Ne/O, while the lack of direct abundance determinations for S/O and Ar/O can bias the interpretation of the evolution of these elements. We determine the fundamental metallicity relationship (FMR) for CLASSY and compare to the high-redshift FMR, finding no evolution. Finally, we perform the first mass–neon relationship analysis across cosmic epochs, finding a slight evolution to high Ne at later epochs. The robust abundance patterns of CLASSY galaxies and their broad range of physical properties provide essential benchmarks for interpreting the chemical enrichment of the early galaxies observed with the JWST.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item