- Main
Inside job: how the ESCRTs release HIV-1 from infected cells.
Published Web Location
https://doi.org/10.1042/bst20180019Abstract
Human immunodeficiency virus type 1 (HIV-1) hijacks the host endosomal sorting complex required for transport (ESCRT) proteins in order to release infectious viral particles from the cell. ESCRT recruitment is virtually essential for the production of infectious virus, despite that the main structural protein of HIV-1, Gag, is capable of self-assembling and eventually budding from membranes on its own. Recent data have reinforced the paradigm of ESCRT-dependent particle release while clarifying why this rapid release is so critical. The ESCRTs were originally discovered as integral players in endosome maturation and are now implicated in many important cellular processes beyond viral and endosomal budding. Nearly all of these roles have in common that membrane scission occurs from the inward face of the membrane neck, which we refer to as 'reverse topology' scission. A satisfactory mechanistic description of reverse-topology membrane scission by ESCRTs remains a major challenge both in general and in the context of HIV-1 release. New observations concerning the fundamental scission mechanism for ESCRTs in general, and the process of HIV-1 release specifically, have generated new insights in both directions, bringing us closer to a mechanistic understanding.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-