Skip to main content
eScholarship
Open Access Publications from the University of California

Direct Observation of Room‐Temperature Magnetic Skyrmion Motion Driven by Ultra‐Low Current Density in Van Der Waals Ferromagnets

Abstract

The recent discovery of room-temperature ferromagnetism in 2D van der Waals (vdW) materials, such as Fe3 GaTe2 (FGaT), has garnered significant interest in offering a robust platform for 2D spintronic applications. Various fundamental operations essential for the realization of 2D spintronics devices are experimentally confirmed using these materials at room temperature, such as current-induced magnetization switching or tunneling magnetoresistance. Nevertheless, the potential applications of magnetic skyrmions in FGaT systems at room temperature remain unexplored. In this work, the current-induced generation of magnetic skyrmions in FGaT flakes employing high-resolution magnetic transmission soft X-ray microscopy is introduced, supported by a feasible mechanism based on thermal effects. Furthermore, direct observation of the current-induced magnetic skyrmion motion at room temperature in FGaT flakes is presented with ultra-low threshold current density. This work highlights the potential of FGaT as a foundation for room-temperature-operating 2D skyrmion device applications.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View