Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A rigorous sequential update strategy for parallel kinetic Monte Carlo simulation

Abstract

The kinetic Monte Carlo (kMC) method is used in many scientific fields in applications involving rare-event transitions. Due to its discrete stochastic nature, efforts to parallelize kMC approaches often produce unbalanced time evolutions requiring complex implementations to ensure correct statistics. In the context of parallel kMC, the sequential update technique has shown promise by generating high quality distributions with high relative efficiencies for short-range systems. In this work, we provide an extension of the sequential update method in a parallel context that rigorously obeys detailed balance, which guarantees exact equilibrium statistics for all parallelization settings. Our approach also preserves nonequilibrium dynamics with minimal error for many parallelization settings, and can be used to achieve highly precise sampling. © 2014 Elsevier B.V. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View