Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Engineered Electrical Conduction Tract Restores Conduction in Complete Heart Block From In Vitro to In Vivo Proof of Concept

Abstract

Background

Cardiac electrical conduction delays and blocks cause rhythm disturbances such as complete heart block, which can be fatal. Standard of care relies on electronic devices to artificially restore synchrony. We sought to create a new modality for treating these disorders by engineering electrical conduction tracts designed to propagate electrical impulses.

Objectives

This study sought to create a new approach for treating cardiac conduction disorders by using engineered electrical conduction tracts (EECTs).

Methods

Paramagnetic beads were conjugated with an antibody to gamma-sarcoglycan, a cardiomyocyte cell surface antigen, and mixed with freshly isolated neonatal rat ventricular cardiomyocytes. A magnetic field was used to pattern a linear EECT.

Results

In an in vitro model of conduction block, the EECT was patterned so that it connected 2 independently beating neonatal rat ventricular cardiomyocyte monolayers; it achieved coordinated electrical activity, with action potentials propagating from 1 region to the other via EECT. Spiking the EECT with heart-derived stromal cells yielded stable structures with highly reproducible conduction velocities. Transplantation of EECTs in vivo restored atrioventricular conduction in a rat model of complete heart block.

Conclusions

An EECT can re-establish electrical conduction in the heart. This novel approach could, in principle, be used not only to treat cardiac arrhythmias but also to repair other organs.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View