Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Overexpression of Mothers Against Decapentaplegic Homolog 7 Activates the Yes‐Associated Protein/NOTCH Cascade and Promotes Liver Carcinogenesis in Mice and Humans

Published Web Location

https://doi.org/10.1002/hep.31692
Abstract

Background and aims

Mothers against decapentaplegic homolog (SMAD) 7 is an antagonist of TGF-β signaling. In the present investigation, we sought to determine the relevance of SMAD7 in liver carcinogenesis using in vitro and in vivo approaches.

Approach and results

We found that SMAD7 is up-regulated in a subset of human HCC samples with poor prognosis. Gene set enrichment analysis revealed that SMAD7 expression correlates with activated yes-associated protein (YAP)/NOTCH pathway and cholangiocellular signature genes in HCCs. These findings were substantiated in human HCC cell lines. In vivo, overexpression of Smad7 alone was unable to initiate HCC development, but it significantly accelerated c-Myc/myeloid cell leukemia 1 (MCL1)-induced mouse HCC formation. Consistent with human HCC data, c-Myc/MCL1/Smad7 liver tumors exhibited an increased cholangiocellular gene expression along with Yap/Notch activation and epithelial-mesenchymal transition (EMT). Intriguingly, blocking of the Notch signaling did not affect c-Myc/MCL1/Smad7-induced hepatocarcinogenesis while preventing cholangiocellular signature expression and EMT, whereas ablation of Yap abolished c-Myc/MCL1/Smad7-driven HCC formation. In mice overexpressing a myristoylated/activated form of AKT, coexpression of SMAD7 accelerated carcinogenesis and switched the phenotype from HCC to intrahepatic cholangiocarcinoma (iCCA) lesions. In human iCCA, SMAD7 expression was robustly up-regulated, especially in the most aggressive tumors, and directly correlated with the levels of YAP/NOTCH targets as well as cholangiocellular and EMT markers.

Conclusions

The present data indicate that SMAD7 contributes to liver carcinogenesis by activating the YAP/NOTCH signaling cascade and inducing a cholangiocellular and EMT signature.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View