Skip to main content
eScholarship
Open Access Publications from the University of California

Photon path distributions in turbid media: Applications for imaging

  • Author(s): Fantini, S
  • Franceschini, MA
  • Walker, SA
  • Maier, JS
  • Gratton, E
  • et al.

Published Web Location

https://doi.org/10.1117/12.209984Creative Commons 'BY' version 4.0 license
Abstract

© 2018 SPIE. Near-IR optical tomography is thwarted by the highly scattering nature of light propagation in tissue. We propose a weighted back-projection method to produce a spatial map of an optical parameter which characterized the investigated medium. We have studied the problem of the choice of the back-projection weight function for the absorption coefficient ((mu) a ) and for the reduced scattering coefficient ((mu) s ') of tissuelike phantoms. Working in frequency-domain optical imaging, we have initially approached the problem of quantifying the effect caused by a small absorbing defect embedded in the medium on the measured DC intensity, AC amplitude, and phase. The collection of DC, AC, and phase changes during a 1 mm step raster scan of the absorbing defect provides information on the photon path distributions and, in general, on the probed spatial region when DC, AC, and phase are, respectively, the measured parameters. We report experimentally determined weight functions for (mu) a and (mu) s '. They indicate that absorption and scattering maps can significantly differ in terms of resolution.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View