Skip to main content
eScholarship
Open Access Publications from the University of California

Breaking New Ground in Computational Psychiatry: Model-Based Characterization of Forgetting in Healthy Aging and Mild Cognitive Impairment

Creative Commons 'BY' version 4.0 license
Abstract

Computational models of memory used in adaptive learning settings trace a learner's memory capacities. However, less work has been done on the implementation of these models in the clinical realm. Current assessment tools lack the reliable, convenient, and repeatable qualities needed to capture the individualized and evolving nature of memory decline. The goal of this project was to predict and track memory decline in subjectively- or mildly cognitively impaired (MCI) individuals by using a model-based, adaptive fact-learning system. Here, we present data demonstrating that these tools can diagnose mild memory impairment with over 80% accuracy after a single 8-minute learning session. These findings provide new insights into the nature and progression of memory decline and may have implications for the early detection and management of Alzheimer's disease and other forms of dementia.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View