Skip to main content
eScholarship
Open Access Publications from the University of California

Synthesis and electronic properties of Ndn+1NinO3n+1 Ruddlesden-Popper nickelate thin films

Abstract

The rare-earth nickelates possess a diverse set of collective phenomena including metal-to-insulator transitions, magnetic phase transitions, and upon chemical reduction, superconductivity. Here, we demonstrate epitaxial stabilization of layered nickelates in the Ruddlesden-Popper form Ndn+1NinO3n+1 using molecular beam epitaxy. By optimizing the stoichiometry of the parent perovskite NdNiO3, we can reproducibly synthesize the n=1-5 member compounds. X-ray absorption spectroscopy at the O K and Ni L edges indicate systematic changes in both the nickel-oxygen hybridization level and nominal nickel filling from 3d8 to 3d7 as we move across the series from n=1 to ∞. The n=3-5 compounds exhibit weakly hysteretic metal-to-insulator transitions with transition temperatures that depress with increasing order toward NdNiO3 (n=∞).

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View