Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Chemical and Light-Absorption Properties of Water-Soluble Organic Aerosols in Northern California and Photooxidant Production by Brown Carbon Components

Abstract

Atmospheric brown carbon (BrC) can impact the radiative balance of the earth and form photooxidants. However, the light absorption and photochemical properties of BrC from different sources remain poorly understood. To address this gap, dilute water extracts of particulate matter (PM) samples collected at Davis, CA over one year were analyzed using high resolution aerosol mass spectrometry (HR-AMS) and UV-vis spectroscopy. Positive matrix factorization (PMF) on combined AMS and UV-vis data resolved five water-soluble organic aerosol (WSOA) factors with distinct mass spectra and UV-vis spectra: a fresh and an aged water-soluble biomass burning OA (WSBBOAfresh and WSBBOAaged) and three oxygenated OA (WSOOAs). WSBBOAfresh is the most light-absorbing, with a mass absorption coefficient (MAC365 nm) of 1.1 m2 g-1, while the WSOOAs are the least (MAC365 nm = 0.01-0.1 m2 g-1). These results, together with the high abundance of WSBBOAs (∼52% of the WSOA mass), indicate that biomass burning activities such as residential wood burning and wildfires are an important source of BrC in northern California. The concentrations of aqueous-phase photooxidants, i.e., hydroxyl radical (·OH), singlet molecular oxygen (1O2*), and oxidizing triplet excited states of organic carbon (3C*), were also measured in the PM extracts during illumination. Oxidant production potentials (PPOX) of the five WSOA factors were explored. The photoexcitation of BrC chromophores from BB emissions and in OOAs is a significant source of 1O2* and 3C*. By applying our PPOX values to archived AMS data at dozens of sites, we found that oxygenated organic species play an important role in photooxidant formation in atmospheric waters.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View