Finite-size correction for slab supercell calculations of materials with spontaneous polarization
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Finite-size correction for slab supercell calculations of materials with spontaneous polarization

Abstract

Abstract: The repeated slab approach has become a de facto standard to accurately describe surface properties of materials by density functional theory calculations with periodic boundary conditions. For materials exhibiting spontaneous polarization, we show that the conventional scheme of passivation with pseudo hydrogen is unable to realize a charge-neutral surface. The presence of a net surface charge induces via Gauss’s law a macroscopic electric field through the slab and results in poor size convergence with respect to the thickness of the slab. We propose a modified passivation method that accounts for the effect of spontaneous polarization, describes the correct bulk limits and boosts convergence with respect to slab thickness. The robustness, reliability, and superior convergence of energetics and electronic structure achieved by the proposed method are demonstrated using the example of polar ZnO surfaces.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View