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Magnetic resonance imaging1,2 (MRI) is a powerful technique for clinical 

diagnosis and materials characterization.  Images are acquired in a homogeneous 

static magnetic field much higher than the fields generated across the field of view 

by the spatially encoding field gradients3,4.  Without such a high field, the 

concomitant components of the field gradient dictated by Maxwell’s equations lead 

to severe, essentially intractable distortions5-7 that make imaging impossible with 

conventional MRI encoding.  In this paper, we present a distortion-free image of a 

phantom acquired with a fundamentally different methodology8 in which the 

applied static field approaches zero.  Our technique involves encoding with pulses of 

uniform and gradient field, and acquiring the magnetic field signals with a SQUID9.  

The method can be extended to weak ambient fields, potentially enabling imaging in 

the Earth’s field without cancellation coils or shielding.  Other potential 

applications include quantum information processing10,11 and fundamental studies 

of long-range ferromagnetic interactions12. 

In MRI, the Larmor precession frequency ω(x, y, z) = γB(x, y, z) of the proton 

spins in the position-dependent magnetic field B(x, y, z) frequency- and phase-encodes 

the proton density distribution into a magnetic signal that is subsequently decoded to 

form an image4 (γ  is the magnetogyric ratio).  In clinical MRI machines4 the strength of 

the applied homogeneous static magnetic field B0 = B0 ẑ  is typically 1.5 T.  There has 

been recent interest, however, in systems operating in magnetic fields of the order of 10-4 

T (for example13-18), where T1-weighted contrast is significantly enhanced16 (T1 is the 

longitudinal relaxation time).  The loss of polarization is compensated–at least in part–by 
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prepolarizing19 the spins at a much higher field, or by hyperpolarization techniques using 

lasers20, dynamic nuclear polarization21,22 or parahydrogen-induced polarization23.  The 

loss of signal amplitude inherent in Faraday-Law detection is mitigated by detecting the 

nuclear magnetization with either a Superconducting QUantum Interference Device 

(SQUID)9 or an atomic magnetometer24, both of which respond to the magnetic flux 

itself, rather than its time rate of change.  Regardless of the magnitude of B0, all currently 

used imaging processes involve the superposition of magnetic field gradients on a static 

field to impose spatial variations of the total field across the subject or sample.  In the 

zero static field regime reported here, conventional MRI gradients are unable to encode 

the spins along a given direction and Fourier encoding breaks down. 

 In conventional MRI techniques, the applied magnetic field gradients are assumed 

to be linear and unidirectional so that the field due to gradients is given by B(x, y, z) = 

(Gxx + Gyy + Gzz) ẑ , where Gx = ∂Bz/∂x, Gy = ∂Bz/∂y, and Gz = ∂Bz/∂z are constants4.  As 

an example, B(x, y, z) = Gzz ẑ  is shown in Fig. 1a.  In reality, however, such idealized 

gradients are forbidden by the Maxwell equations divB = curlB = 0 for any magnetic 

field B in free space.  In fact, any gradient must be accompanied by concomitant 

gradients in at least one additional direction, as illustrated in Fig. 1b.  At very low static 

fields the undesired gradient components perpendicular to B0 induce severe, essentially 

intractable image distortions5-7.  The degree of distortion is characterized by a parameter 

ε  = GL/B0, where G is the magnitude of the field gradient and L is the image field of 

view (FOV)7.  When ε  << 1, the gradient fields can be approximated as unidirectional, 

greatly simplifying image encoding and reconstruction and leading to negligible image 
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distortion.  This “truncation” of the concomitant fields forms the basis of all MRI 

techniques used today including projection reconstruction and Fourier imaging4.   

Several approaches have been proposed for imaging in the regime ε  >> 1 where 

conventional techniques fail8,25,26.  Our experiment8 relies on the fact that, for very small 

angles, the precession of spins about an arbitrary field B can be represented by the sum of 

the precessions about each component of B.  After such a precession, the magnetization 

components that have evolved in the concomitant field can be reversed while leaving the 

desired unidirectional encoded component unchanged, an example of an average 

Hamiltonian27.  

 Figure 2a shows the pulse sequence for two-dimensional imaging in the limit of 

zero static field, and Figs. 2b and 2c depict the classical evolution of spins at (y′, z′) 

subjected to this sequence.  The proton spins are first polarized along the x-axis by a large 

field Bp which is turned off nonadiabatically22 at time t = 0 (point A in Figs. 2a, b and c).  

The gradient field B(y, z) = (∂By/∂y)y ŷ  + (∂Bz/∂z)z ẑ  is turned on, and subsequently 

turned off nonadiabatically at time τ (point B).  During this time interval, the spin 

precesses about B(y′, z′).  The time τ is chosen to satisfy the requirement τ << 1/γGzL.  

Consequently, the precession during the interval τ is small, and we can treat it as the sum 

of precessions around ẑ  and ŷ :  δz = γ(∂Bz/∂z)z'τ around ẑ  (Fig. 2b) and δy = 

γ(∂By/∂y)y'τ  around ŷ (Fig. 2c).  After the gradient pulse, a π pulse of uniform field Βπ is 

applied along the z-axis with amplitude and duration adjusted to produce a precession 

angle of π around ẑ .  This pulse flips the spin to the point C in Figs. 2b and 2c.  
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Subsequently, a second gradient pulse brings the spin to D, and a second π pulse to E.  

This sequence of pulses produces a net precession of the spin about Bz, but no net 

precession about By.  Thus, the two π pulses average out the components of field 

perpendicular to ẑ , leaving an effectively unidirectional gradient field Beff(y, z)  = Gzz ẑ . 

 To implement this sequence, it is convenient to define a “pulse unit” consisting of 

two gradient pulses and two π pulses.  Clearly, the addition of subsequent pulse units 

increases the angle of precession about ẑ .  After n pulse units, the gradient has been 

applied for a total time tn = 2nτ.  Data are acquired at discrete values of k, namely 

∫=
n

0
zn )()(

t

dttGtk γ , using point-by-point detection in which each point in k-space is 

acquired in a separate experiment.  After the final pulse unit, a small measurement field 

Bm is turned on along the z-axis and the NMR signal from precession about this field is 

detected (Fig. 2d).  The Fourier transform of this real-valued signal produces a complex-

valued peak in frequency space, yielding the real and imaginary parts of k(2nτ).  After 

completing the acquisition, the k-space projection is Fourier transformed to obtain a one-

dimensional, real-space projection of the sample.  Subsequently, we rotate the sample 

through an angle θ (<< π) and acquire another projection; the procedure is repeated until 

the range from 0º to 180º is covered.  The image is reconstructed using filtered back-

projection4.  

 The configuration of our experiment is shown in Fig. 3 and our results in Fig. 4.  

Figure 4a shows the geometry of the phantom in an image acquired in a 9.4-T MRI 

system with a FOV of 23 mm.  Figure 4b shows the image obtained with a gradient echo 
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sequence in an applied static field of 0.12 μT, corresponding to an NMR frequency of ~5 

Hz, applied along the z-axis.  The image was acquired using point-by-point detection (see 

Supplementary Information).  We estimate ε > 6.5 (residual fields add to the applied 

static field).  As expected, in this regime of strong concomitant gradients, Fourier 

encoding breaks down and the image bears no resemblance to the phantom5-7. 

 Figure 4c shows the image acquired in zero applied field with the sequence shown 

in Fig. 2d.  We minimized the residual field Br by performing separate NMR experiments 

while varying the cancellation field along the x-axis.  The minimum NMR frequency was 

about 8 Hz, corresponding to Br ≈ 0.2 μT.  With a FOV L = 23 mm, gradient pulse 

magnitude Gz = 100 µT/m, and regarding the residual field as B0, we find ε > 10, a 

regime which is clearly beyond the realm of conventional MRI.  Our image, however, 

closely resembles the high-field image.  Acquisition of this image required 5.6 hours; in 

the Supplementary Information we illustrate how this time could potentially be reduced 

to a few minutes. 

 We can generalize our zero-field technique to the case of a uniform ambient field 

Ba, which imposes conditions on both the gradient and π pulses.  For a given amplitude, 

the maximum gradient pulse duration is limited by the need to keep the precession angle 

small.  In practice, though, we find that the zero-field sequence is quite robust–in the 

image shown in Fig. 4c, the maximum precession angle is approximately 65°.  For a total 

field of 50 µT (approximately the Earth’s field), an upper bound of 65° limits the 

maximum duration of the gradient pulse to about 85 µs (see Supplementary Information).  

The presence of Ba also affects the amplitude and duration of the π pulse.  Components of 
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Ba perpendicular to the π pulse induce errors by modifying the pulse amplitude and 

direction.  To limit the error in the π pulse to less than 1%, the pulse amplitude must be 

approximately seven times the perpendicular component of Ba.  This requirement can be 

mitigated, however, by aligning the π pulse with Ba.  Components of Ba parallel to the 

direction of the π pulse, Ba(parallel), can be beneficial; the total field during the π pulse is 

Bπ = Bπ(app) + Ba(parallel) where Bπ(app) is the applied π pulse.  Thus, if one aligns the 

system so that Bπ is parallel to (say) the Earth’s field to within about 8°, one can keep 

errors in the π pulse amplitude to less than 1% and acquire undistorted images (see 

Supplementary Information). 

In addition to MRI, we envisage applications of our pulsed technique or related 

continuous-wave versions26 to experiments that use magnetic field gradients for 

controlling the dynamics of spins.  For example, several proposals for quantum 

information processing10-12 use magnetic fields and field gradients to confine ions or 

electrons in one-10 or two-dimensional12 arrays of traps.  The analysis presented by 

Ciaramicoli et al.12 clearly shows that the presence of concomitant gradients makes it 

nontrivial to address individual qubits in higher dimensional arrays.  Our technique could 

be used28 to provide unidirectional and linear gradients in the field to address individual 

spins or groups of spins in three-dimensional space in a relatively straightforward 

manner.  This addressing scheme would also enable the creation of controlled quantum 

Ising spin models for fundamental studies of long-range ferromagnetic interactions12 in 

arbitrary, user-designed lattices.  
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Methods 

The experimental configuration is shown schematically in Fig. 3.  A double-

walled Pyrex vacuum vessel is immersed in liquid helium contained in a dewar 

surrounded with a single-layer mu-metal shield to attenuate external magnetic fields.  A 

superconducting lead shield inside the dewar stabilizes the residual magnetic field.  The 

sample rests at the bottom of the insert–which has room-temperature access–and is 

maintained in the liquid state at approximately -50º C by a heater; the heater is switched 

off during encoding and data acquisition29.  The coils required to generate the magnetic 

fields are wound from insulated NbTi wire and are attached to the outside of the insert.  A 

Helmholtz pair provides a uniform field along the z-axis for the π pulses, and a second 

Helmholtz pair, wound on top of the first, generates the measurement field Bm.  The 

rectangular gradient coils generate a field of the form B(y, z) = (∂By/∂y)y ŷ  + (∂Bz/∂z)z ẑ  

in the y-z plane (shown in Fig. 1b) over the imaging FOV, where ∂By/∂y ≈ -0.9 (∂Bz/∂z); 

since we image in the y-z plane, we neglect the effects of gradients along x̂ .  A further 

pair of coils largely cancels the residual field from the Earth, which is predominantly 

along the x-axis.  The signal from the precessing spins is detected by a first-derivative, 

superconducting gradiometer coupled to the input coil of a Nb-based SQUID9.  The 

gradiometer, which consists of two Nb-wire loops of nominally equal area wound in 

opposite senses and connected in series, reduces ambient noise in the measurement 

direction.  A series array of 24 Josephson junctions limits the supercurrent while the 

fields are being switched30.  The SQUID is enclosed in a Nb shield suspended below the 

insert, and is read out using a flux-locked loop9.
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Figure Legends 

Fig. 1 Idealized and achievable magnetic field gradients.  a, Idealized gradient field B = 

(∂Bz/∂z)z ẑ .  Such a field violates Maxwell’s equations.  b, Example of a realizable 

gradient field in the y-z plane of the form B(y,z) = (∂By/∂y)y ŷ + (∂Bz/∂z)z ẑ .  Lengths of 

vectors represent relative field strengths. 

 

Fig. 2 Protocol for MRI in zero static field.  a, Pulse sequence vs. time.  b-c, Progression 

of the spin vector at times t = 0 (A), τ (B), 2τ (C), 3τ (D) and 4τ (E) about (b) z-axis and 

(c) y-axis.  d, Pulse sequence used for the zero-field MRI experiment differs from that in 

b in two respects.  First, after the final pulse pair, a gradient pulse was applied for a time 

τ/2; this pulse corrects higher order errors8,25.  Second, to ensure that the important k = 0 

point was included, the gradient was inverted in the first pulse unit, so that the first point 

in k-space was k(5τ/2) = −(3τ/2)γGz.  All subsequent gradient pulses have positive 

polarity; for example, the second k-space point was k(9τ/2) = (τ/2)γGz.  Note that the 

measurement field Bm is not applied during encoding pulses; it is used solely for point-

by-point k-space acquisition, enabling quadrature detection with a single sensor. 

 

Fig. 3 Configuration of experiment. 

 

Fig. 4  Images of a phantom.  Views are along the axis of a nylon cylinder 17 mm in 

diameter and 35 mm long in which a cavity has been cut and filled with water (a) or 

ethanol (b,c).  a, High-field conventional image acquired at 9.4 T.  b, Conventional 
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gradient-echo image with ε > 6.5 bears no relation to the phantom due to concomitant 

field distortions.  c, Image encoded in the approach to zero applied static field where the 

concomitant fields of the encoding gradients yield ε > 10.  The prepolarization field Bp ≈ 

10 mT was applied for 2 s.  The image was encoded in nearly zero static field using 100-

μT/m gradient pulses with a duration τ = 5 ms.  The π pulses, with a magnitude of 

approximately 12 µT and duration of 1 ms, produced an effective field Beff = (∂Bz/∂z)z ẑ .  

The π pulse amplitude was determined in separate experiments to an accuracy of ±1%.  

After the spins were encoded, the NMR signal was acquired in 1 s in a measurement field 

Bm = 3.75 μT, corresponding to an NMR frequency of 160 Hz.  Projections were acquired 

every 7.5º, so that 24 projections covered the range from 0º to 172.5º.  The time for each 

projection was about 14 min, giving a total acquisition time of about 5.6 h.  Each k-space 

projection contained 24 points. 
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Supplementary Information 

 

Gradient Echo Imaging 

 The image shown in Fig. 4c was acquired using a conventional gradient echo 

sequence4 modified for point-by-point k-space acquisition.  The sequence used to acquire 

the k(9τ/2) point is shown in Fig. S1.  The proton spins are first polarized along the x-axis 

by a large field Bp which is turned off nonadiabatically at time t = 0.  Subsequently, two 

fields are switched on:  a uniform static field B0 along the z-axis, and a negative gradient 

field –B(y, z) = – (∂By/∂y)y ŷ  – (∂Bz/∂z)z ẑ .  After a time 2τ  the gradient is reversed.  The 

B0 and gradient fields are maintained until the desired point in k-space is reached, at 

which time a measurement field Bm is applied.  The time-domain data are acquired and 

processed as described in the main text for the zero-field experiment.   

 The point-by-point k-space acquisition technique was used in the conventional 

image in order to match as closely as possible the conditions for the zero-field image.  

The conventional imaging experiment uses the same polarizing pulse, gradients, and 

encoding times as does the zero-field experiment.  The gradient echo sequence requires a 

uniform static field B0 during encoding in order to establish a "preferred" gradient 

direction; components of the gradient perpendicular to B0 are the unwanted concomitant 

terms.  (Recall that in the zero-field sequence, the preferred gradient direction is that of 

the π pulses.)     
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Imaging Time Considerations 

Our implementation of zero-field MRI involves acquiring k-space point-by-point.  

The primary reason is that this method yields the real and imaginary parts of k-space, 

effectively providing quadrature detection with a single sensor, but the procedure is time 

consuming.  For each of the 24 projections of the image we acquire 24 points, each taking 

3.5 seconds (2-s polarizing pulse followed by up to 0.5-s encoding time and 1-s data 

acquisition time), and each point is averaged 10 times to increase the signal-to-noise ratio 

(SNR) leading to a total acquisition time of about 5.6 hours.  The imaging time could be 

reduced substantially by using two orthogonal SQUID-based gradiometers.  Since all 

points in one projection could be acquired in one experiment, the imaging time would be 

reduced by a factor of 24.  Increasing the prepolarization field from 10 mT to 100 mT 

would increase the SNR 10-fold.  As shown below, these two factors alone would reduce 

the acquisition time to 2-3 minutes.  Adding a Helmholtz pair along the y-axis (to allow π 

pulses in an arbitrary direction in the y-z plane) and a second, off-diagonal gradient such 

as ∂Bz/∂y would make it possible to perform acquisitions along arbitrary k-space 

trajectories, and would eliminate the need to rotate the sample.  Optimized k-space 

sampling would result in further improvements in image quality and acquisition time. 

 We now outline our calculations of the statements above.  In MRI, the SNR is 

commonly defined as the signal amplitude divided by the standard deviation of the noise.  

For an acquisition lasting a time of tacq  
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where σn is the standard deviation of the noise (which is stationary and assumed to 

originate from the electronics and detector) and s(t) is the integrated signal from the 

nuclear magnetization detected by the sensor (assuming negligible noise)4.  To compare 

the SNR of two acquisition methods, we estimate the value of the bracketed term from 

the formula 

[ ] [ ]dydzzytBiTtzymts
y z

G∫ ∫ −−∝ ∗ ),(exp/exp),()( 2 γ , 

where T2* is the transverse relaxation time, BG(y,z) is the field due to applied gradients, 

and m(y,z) is a function representing the spin distribution in the sample, normalized such 

that 

1),( =∫ ∫
y z

dydzzym . 

 In the point-by-point (pbp) acquisition method described in the text, the signal is 

acquired as a free induction decay (FID) in the uniform field Bm.  The demodulated signal 

equation in this case is given by 

[ ]∫ ∫ ∗−=
y z

pbp dydzTtzymts 2/exp),()( , 

where, in our experiments, the transverse relaxation time T2* was measured to be 300 ms.  

Using our acquisition time tacq = 1 second,  
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. 

 In a directly-detected experiment using two orthogonal detectors, the signal could 

be detected as precession about the gradient field BG during every second gradient pulse.  

The demodulated signal equation in this case is given by 

[ ] [ ]∫ ∫ −−= ∗

y z
Gdir dzdytBiTtzymts γexp/exp),()( 2 , 

where 

( )[ ] ( )[ ]22 // zzByyBB zyG ∂∂+∂∂=  

is the field magnitude at the point (y, z).  For our value BG = 100 µT/m and a 5-ms 

acquisition  

0990.0
)(2

0 ≈∝
∫

acq

t

dir

dir t

dtts
SNR

acq

. 

The factor of √2 arises from the use of two detectors in quadrature detection. 

 We now compare the difference in SNR between the two acquisition methods.  If 

the noise standard devation σn is the same in both cases, we find 

34.0
289.0
0990.0 ≈∝

pbp

dir

SNR
SNR

. 

The SNR in the directly-detected experiment is about 1/3 that of the point-by-point 

experiment, while the imaging time is reduced by a factor of 24.   
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 As stated in the main text, our point-by-point imaging procedure took 

approximately 5.6 hours; the time is long because each k-space point is acquired in a 

separate experiment.  The imaging time could potentially be reduced to approximately 

two minutes, for the equivalent SNR, by acquiring the signal directly (using two 

orthogonal detectors), eliminating signal averaging, and increasing the polarizing field 

from 10 mT to 100 mT.   

 We explain this estimate as follows. The direct acquisition method would reduce 

imaging time by a factor of 24 by acquiring all k-space points in a single experiment. The 

SNR loss, however, is a factor of ~3, as described previously.  Elimination of signal 

averaging reduces imaging time by an additional factor of 10, at the cost of an additional 

factor of ~3 in SNR.  Thus, the total SNR drops by a factor of ~9 while reducing imaging 

time by a factor of 240.  This factor of ~9 loss in SNR can be recovered by increasing the 

prepolarization field from 10 mT to 100 mT.  Together, these factors result in the same 

SNR, but with a substantial reduction in acquisition time.  

 

Effect of a Uniform Ambient Field on Gradient Pulse Duration 

The angle of precession during a field pulse of amplitude B and duration τ is given 

(in radians) by δ = γBτ.  Solving for τ with δ = 65° ≈ 1.13 radians, γ = 2π * 42.6 Hz/µT, 

and B = 50 µT yields τ ≈ 85 µs. 

 

Effect of a Uniform Ambient Field on π Pulse Amplitude 
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We consider the conditions on the π pulse imposed by the presence of a uniform 

ambient field.  The z-axis is defined to be along the direction of the applied π pulse.  The 

z-axis is thus the desired direction of the total π pulse; in the presence of an ambient field, 

the field amplitude along z is given by Bπ(app) + Ba(parallel) where Bπ(app) is the 

applied pulse and Ba(parallel) is the component of ambient field parallel to the z-axis.  

For a component of ambient field perpendicular to the z-axis Ba(perp), the total field 

during the π pulse is given by (Fig. S2) 

22 )]([)]()([)( perpBparallelBappBtotB aa ++= ππ . 

Thus Bπ(tot) ≤ 1.01 [Bπ(app) + Ba(parallel)] when Ba(perp) ≤ Bπ(tot)/7.  

For the limiting case in which Bπ(app) = 0, the angle θ in Fig. S2 gives the 

misalignment between Ba and the z-axis.  To maintain the condition Ba(perp) ≤ Bπ(tot)/7, 

one requires θ ≤ 8°. 
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Figure Captions for Supplementary Information 

Fig. S1.  Pulse sequence vs. time for the k(9τ/2) point of the conventional image. 

Fig. S2.  Effect of uniform ambient field on π pulse. 
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