- Main
An Explanatory Multidimensional Random Item Effects Rating Scale Model.
Published Web Location
https://doi.org/10.1177/00131644221140906Abstract
Random item effects item response theory (IRT) models, which treat both person and item effects as random, have received much attention for more than a decade. The random item effects approach has several advantages in many practical settings. The present study introduced an explanatory multidimensional random item effects rating scale model. The proposed model was formulated under a novel parameterization of the nominal response model (NRM), and allows for flexible inclusion of person-related and item-related covariates (e.g., person characteristics and item features) to study their impacts on the person and item latent variables. A new variant of the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm designed for latent variable models with crossed random effects was applied to obtain parameter estimates for the proposed model. A preliminary simulation study was conducted to evaluate the performance of the MH-RM algorithm for estimating the proposed model. Results indicated that the model parameters were well recovered. An empirical data set was analyzed to further illustrate the usage of the proposed model.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-