- Main
Photoinitiated Oxidative Addition of CF3I to Gold(I) and Facile Aryl-CF3 Reductive Elimination
Published Web Location
https://doi.org/10.1021/ja503974xAbstract
Herein we report the mechanism of oxidative addition of CF3I to Au(I), and remarkably fast Caryl-CF3 bond reductive elimination from Au(III) cations. CF3I undergoes a fast, formal oxidative addition to R3PAuR' (R = Cy, R' = 3,5-F2-C6H4, 4-F-C6H4, C6H5, 4-Me-C6H4, 4-MeO-C6H4, Me; R = Ph, R' = 4-F-C6H4, 4-Me-C6H4). When R' = aryl, complexes of the type R3PAu(aryl)(CF3)I can be isolated and characterized. Mechanistic studies suggest that near-ultraviolet light (λmax = 313 nm) photoinitiates a radical chain reaction by exciting CF3I. Complexes supported by PPh3 undergo reversible phosphine dissociation at 110 °C to generate a three-coordinate intermediate that undergoes slow reductive elimination. These processes are quantitative and heavily favor Caryl-I reductive elimination over Caryl-CF3 reductive elimination. Silver-mediated halide abstraction from all complexes of the type R3PAu(aryl)(CF3)I results in quantitative formation of Ar-CF3 in less than 1 min at temperatures as low as -10 °C.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-