Maximum likelihood estimation of endogenous switching and sample selection models for binary, ordinal, and count variables
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Maximum likelihood estimation of endogenous switching and sample selection models for binary, ordinal, and count variables

Published Web Location

http://www.stata-journal.com/article.html?article=st0107
No data is associated with this publication.
Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

Studying behavior in economics, sociology, and statistics often involves fitting models in which the response variable depends on a dummy variable- also known as a regime-switch variable- or in which the response variable is observed only if a particular selection condition is met. In either case, standard regression techniques deliver inconsistent estimators if unobserved factors that affect the re- sponse are correlated with unobserved factors that affect the switching or selection variable. Consistent estimators can be obtained by maximum likelihood estimation of a joint model of the outcome and switching or selection variable. This article describes a “wrapper” program, ssm, that calls gllamm (Rabe-Hesketh, Skrondal, and Pickles, GLLAMM Manual [University of California – Berkeley, Division of Bio- statistics, Working Paper Series, Paper No. 160]) to fit such models. The wrapper accepts data in a simple structure, has a straightforward syntax, and reports out- put that is easily interpretable. One important feature of ssm is that the log likelihood can be evaluated using adaptive quadrature (Rabe-Hesketh, Skrondal, and Pickles, Stata Journal 2: 1–21; Journal of Econometrics 128: 301–323). Copyright 2006 by StataCorp LP.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item