Maximum likelihood estimation of endogenous switching and sample selection models for binary, ordinal, and count variables
Published Web Location
http://www.stata-journal.com/article.html?article=st0107Abstract
Studying behavior in economics, sociology, and statistics often involves fitting models in which the response variable depends on a dummy variable- also known as a regime-switch variable- or in which the response variable is observed only if a particular selection condition is met. In either case, standard regression techniques deliver inconsistent estimators if unobserved factors that affect the re- sponse are correlated with unobserved factors that affect the switching or selection variable. Consistent estimators can be obtained by maximum likelihood estimation of a joint model of the outcome and switching or selection variable. This article describes a “wrapper” program, ssm, that calls gllamm (Rabe-Hesketh, Skrondal, and Pickles, GLLAMM Manual [University of California – Berkeley, Division of Bio- statistics, Working Paper Series, Paper No. 160]) to fit such models. The wrapper accepts data in a simple structure, has a straightforward syntax, and reports out- put that is easily interpretable. One important feature of ssm is that the log likelihood can be evaluated using adaptive quadrature (Rabe-Hesketh, Skrondal, and Pickles, Stata Journal 2: 1–21; Journal of Econometrics 128: 301–323). Copyright 2006 by StataCorp LP.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.