Skip to main content
eScholarship
Open Access Publications from the University of California

Multiscale damage analysis of carbon nanotube nanocomposite using a continuum damage mechanics approach

Abstract

A multiscale-modeling framework is presented to understand damage and failure response in carbon nanotube reinforced nanocomposites. A damage model is developed using the framework of continuum damage mechanics with a physical damage evolution equation inspired by molecular dynamics simulations. This damage formulation is applied to randomly dispersed carbon nanotube reinforced nanocomposite unit cells with periodic boundary conditions to investigate preferred sites and the tendency towards damage. The continuum model is seen as successfully capturing much of the unique nonlinear trends observed in the molecular dynamics simulations in a volume 1000 times greater than the molecular dynamics unit cell. Additionally, application of the damage model to the continuum unit cell revealed insights into the failure of carbon nanotube reinforced nanocomposites at the sub-microscale.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View