- Main
The application of machine-learning and Raman spectroscopy for the rapid detection of edible oils type and adulteration
Published Web Location
https://doi.org/10.1016/j.foodchem.2021.131471Abstract
Raman spectroscopy is an emerging technique for the rapid detection of oil qualities. But the spectral analysis is time-consuming and low-throughput, which has limited the broad adoption. To address this issue, nine supervised machine learning (ML) algorithms were integrated into a Raman spectroscopy protocol for achieving the rapid analysis. Raman spectra were obtained for ten commercial edible oils from a variety of brands and the resulting spectral dataset was analyzed with supervised ML algorithms and compared against a principal component analysis (PCA) model. A ML-derived model obtained an accuracy of 96.7% in detecting oil type and an adulteration prediction of 0.984 (R2). Several ML algorithms also were superior than PCA in classifying edible oils based on fatty acid compositions by gas chromatography, with a faster readout and 100% accuracy. This study provided an exemplar for combining conventional Raman spectroscopy or gas chromatography with ML for the rapid food analysis.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-