Skip to main content
eScholarship
Open Access Publications from the University of California

Possibility Semantics

Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

In traditional semantics for classical logic and its extensions, such as modal logic, propositions are interpreted as subsets of a set, as in discrete duality, or as clopen sets of a Stone space, as in topological duality. A point in such a set can be viewed as a "possible world," with the key property of a world being primeness—a world makes a disjunction true only if it makes one of the disjuncts true—which classically implies totality—for each proposition, a world either makes the proposition true or makes its negation true. This chapter surveys a more general approach to logical semantics, known as possibility semantics, which replaces possible worlds with possibly partial "possibilities." In classical possibility semantics, propositions are interpreted as regular open sets of a poset, as in set-theoretic forcing, or as compact regular open sets of an upper Vietoris space, as in the recent theory of "choice-free Stone duality." The elements of these sets, viewed as possibilities, may be partial in the sense of making a disjunction true without settling which disjunct is true. We explain how possibilities may be used in semantics for classical logic and modal logics and generalized to semantics for intuitionistic logics. The goals are to overcome or deepen incompleteness results for traditional semantics, to avoid the nonconstructivity of traditional semantics, and to provide richer structures for the interpretation of new languages.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View