Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Statistically relaxing to generating partitions for observed time-series data

Abstract

We introduce a relaxation algorithm to estimate approximations to generating partitions for observed dynamical time series. Generating partitions preserve dynamical information of a deterministic map in the symbolic representation. Our method optimizes an essential property of a generating partition: avoiding topological degeneracies. We construct an energylike functional and use a nonequilibrium stochastic minimization algorithm to search through configuration space for the best assignment of symbols to observed data. As each observed point may be assigned a symbol, the partitions are not constrained to an arbitrary parametrization. We further show how to select particular generating partition solutions which also code low-order unstable periodic orbits in a given way, hence being able to enumerate through a number of potential generating partition solutions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View