Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Human skin penetration of a copper tripeptide in vitro as a function of skin layer

Abstract

Objective and design

Skin retention and penetration by copper applied as glycyl-L-histidyl-L-lysine cuprate diacetate was evaluated in vitro in order to assess its potential for its transdermal delivery as an anti-inflammatory agent.

Materials and methods

Flow-through diffusion cells with 1 cm(2) exposure area were used under infinite dose conditions. 0.68% aq. copper tripeptide as permeant was applied on isolated stratum corneum, heat-separated epidermis and dermatomed skin and receptor fluid collected over 48 h in 4 h intervals using inductively coupled plasma mass spectrometry to analyze for copper in tissues and receptor fluid.

Results

The permeability coefficient of the compound through dermatomed skin was 2.43 ± 0.51 × 10(-4) cm/h; 136.2 ± 17.5 μg/cm(2) copper permeated 1 cm(2) of that tissue over 48 h, while 97 ± 6.6 μg/cm(2) were retained as depot.

Conclusions

Copper as tripeptide was delivered in potentially therapeutically effective amounts for inflammatory disease.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View