Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Observation of the Relativistic Reversal of the Ponderomotive Potential

Abstract

The secular dynamics of a nonrelativistic charged particle in an electromagnetic wave can be described by the ponderomotive potential. Although ponderomotive electron-laser interactions at relativistic velocities are important for emerging technologies from laser-based particle accelerators to laser-enhanced electron microscopy, the effects of special relativity on the interaction have only been studied theoretically. Here, we use a transmission electron microscope to measure the position-dependent phase shift imparted to a relativistic electron wave function when it traverses a standing laser wave. The kinetic energy of the electrons is varied between 80 and 300 keV, and the laser standing wave has a continuous-wave intensity of 175  GW/cm^{2}. In contrast to the nonrelativistic case, we demonstrate that the phase shift depends on both the electron velocity and the wave polarization, confirming the predictions of a quasiclassical theory of the interaction. Remarkably, if the electron's speed is greater than 1/sqrt[2] of the speed of light, the phase shift at the electric field nodes of the wave can exceed that at the antinodes. In this case there exists a polarization such that the phase shifts at the nodes and antinodes are equal, and the electron does not experience Kapitza-Dirac diffraction. Our results thus provide new capabilities for coherent electron beam manipulation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View