Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

KiloCore: A 32-nm 1000-Processor Computational Array

Published Web Location

http://vcl.ece.ucdavis.edu/pubs/2017.04.JSSC.kilocore/2017.04.jssc.kilocore.pdf
No data is associated with this publication.
Abstract

A processor array containing 1000 independent processors and 12 memory modules was fabricated in 32-nm partially depleted silicon on insulator CMOS. The programmable processors occupy 0.055 mm2 each, contain no algorithm-specific hardware, and operate up to an average maximum clock frequency of 1.78 GHz at 1.1 V. At 0.9 V, processors operating at an average of 1.24 GHz dissipate 17 mW while issuing one instruction per cycle. At 0.56 V, processors operating at an average of 115 MHz dissipate 0.61 mW while issuing one instruction per cycle, resulting in an energy consumption of 5.3 pJ/instruction. On-die communication is performed by complementary circuit and packet-based networks that yield a total array bisection bandwidth of 4.2 Tb/s. Independent memory modules handle data and instructions and operate up to an average maximum clock frequency of 1.77 GHz at 1.1 V. All processors, their packet routers, and the memory modules contain unconstrained clock oscillators within independent clock domains that adapt to large supply voltage noise. Compared with a variety of Intel i7s and Nvidia GPUs, the KiloCore at 1.1 V has geometric mean improvements of 4.3 \times higher throughput per area and 9.4 \times higher energy efficiency for AES encryption, 4095-b low-density parity-check decoding, 4096-point complex fast Fourier transform, and 100-B record sorting applications.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item