Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Performance Assessment of Turbocharged Pem Fuel Cell Systems for Civil Aircraft Onboard Power Production

Published Web Location

https://doi.org/10.1115/1.2772636Creative Commons 'BY' version 4.0 license
Abstract

In recent years, civil aircraft projects are showing a continuous increase in the demand of onboard electrical power, both for the partial substitution of hydraulic or pneumatic controls and drives with electrical ones, and for the consumption of new auxiliary systems developed in response to flight safety and environmental control issues. Aiming to generate onboard power with low emissions and better efficiency, several manufacturers and research groups are considering the possibility to produce a relevant fraction of the electrical power required by the aircraft by a fuel cell system. The first step would be to replace the conventional auxiliary power unit (based on a small gas turbine) with a polymer electrolyte membrane (PEM) fuel cell type, which today is favored with respect to other fuel cell types; thanks to its higher power density and faster startup. The PEM fuel cell can be fed with a hydrogen rich gas coming from a fuel reformer, operating with the same jet fuel used by the aircraft, or relying on a dedicated hydrogen storage onboard. The cell requires also an air compression unit, where the temperature, pressure, and humidity of the air stream feeding the PEM unit during land and in-flight operation strongly influence the performance and the physical integrity of the fuel cell. In this work we consider different system architectures, where the air compression system may exploit an electrically driven compressor or a turbocharger unit. The compressor type and the system pressure level are optimized according to a fuel cell simulation model, which calculates the cell voltage and efficiency as a function of temperature and pressure, calibrated over the performances of real PEM cell components. The system performances are discussed under different operating conditions, covering ground operation, and intermediate and high altitude cruise conditions. The optimized configuration is selected, presenting energy balances and a complete thermodynamic analysis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View