Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Coherent energy exchange between carriers and phonons in Peierls-distorted bismuth unveiled by broadband XUV pulses

Abstract

In Peierls-distorted materials, photoexcitation leads to a strongly coupled transient response between structural and electronic degrees of freedom, always measured independently of each other. Here we use transient reflectivity in the extreme ultraviolet to quantify both responses in photoexcited bismuth in a single measurement. With the help of first-principles calculations based on density-functional theory (DFT) and time-dependent DFT, the real-space atomic motion and the temperature of both electrons and holes as a function of time are captured simultaneously, retrieving an anticorrelation between the A1g phonon dynamics and carrier temperature. The results reveal a coherent, bidirectional energy exchange between carriers and phonons, which is a dynamical counterpart of the static Peierls-Jones distortion, providing validation of previous theoretical predictions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View