Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Effect of Anion Size on Conductivity and Transference Number of Perfluoroether Electrolytes with Lithium Salts

Abstract

Mixtures of perfluoropolyethers (PFPE) and lithium salts with fluorinated anions are a new class of electrolytes for lithium batteries. Unlike conventional electrolytes wherein electron-donating oxygen groups interact primarily with the lithium cations, the properties of PFPE-based electrolytes appear to be dependent on interactions between the fluorinated anions and the fluorinated backbones. We study these interactions by examining a family of lithium salts wherein the size of the fluorinated anion is systematically increased: lithium bis(fluorosulfonyl)imide (LiFSI), bis(trifluoromethanesulfonyl)imide (LiTFSI) salts and lithium bis(pentafluoroethanesulfonyl)imide (LiBETI). Two short chain perfluoroethers (PFE), one with three repeat units, C6-DMC, and another with four repeat units, C8-DMC were studied; both systems have dimethyl carbonate end groups.We find that LiFSI provides the highest conductivity in both C6-DMC and C8-DMC. These systems also present the lowest interfacial resistance against lithium metal electrodes. The steady-state transference number (t+ss) was above 0.6 for all of the electrolytes and was an increasing function of anion size. The product of conductivity and the steady-state transference number, a convenient measure of the efficacy of the electrolytes for lithium battery applications, exhibited a maximum at about 20 wt% salt in all electrolytes. Amongst the systems studied, LiFSI/PFE mixtures were the most efficacious electrolytes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View