Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Pharmacological Attenuation of Electrical Effects in a Model of Compression Neuropathy.

Abstract

Background

Peripheral nerve compression and entrapment can be debilitating. Using a validated animal model of peripheral nerve compression, we examined the utility of 2 drugs approved for other uses in humans, 4-aminopyridine (4-AP) and erythropoietin (EPO), as treatments for surgically induced ischemia and as adjuvants to surgical decompression.

Methods

Peripheral nerve compression was induced in wild-type mice by placing an inert silicone sleeve around the sciatic nerve. Decompression surgery was performed at 6 weeks with mice receiving 4-AP, EPO, or saline solution either during and after compression or only after decompression. A nerve conduction study and morphometric analyses were performed to compare the extent of the injury and the efficacy of the therapies, and the findings were subjected to statistical analysis.

Results

During peripheral nerve compression, there was a progressive decline in nerve conduction velocity compared with that in sham-treatment animals, in which nerve conduction velocity remained normal (∼55 m/s). Mice treated with 4-AP or EPO during the compression phase had significantly smaller declines in nerve conduction velocity and increased plateau nerve conduction velocities compared with untreated controls (animals that received saline solution). Histomorphometric analyses of newly decompressed nerves (i.e., nerves that underwent decompression on the day that the mouse was sacrificed) revealed that both treated groups had significantly greater proportions of large (>5-µm) axons than the untreated controls. Following surgical decompression, all animals recovered to a normal baseline nerve conduction velocity by day 15; however, treatment significantly accelerated improvement (in both the 4-AP and the EPO group), even when it was only started after decompression. Histomorphometric analyses at 7 and 15 days following surgical decompression revealed significantly increased myelin thickness and significantly greater proportions of large axons among the treated animals.

Conclusions

Both the 4-AP and the EPO-treated group demonstrated improvements in tissue architectural and electrodiagnostic measurements, both during and after peripheral nerve compression, compared with untreated mice.

Clinical relevance

Peripheral nerve decompression is one of the most commonly performed procedures in orthopaedic surgery. We believe that there is reason for some optimism about the translation of our findings to the clinical setting. Our findings in this murine model suggest that 4-AP and EPO may lessen the effects of nerve entrapment and that the use of these agents after decompression may speed and perhaps otherwise optimize recovery after surgery.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View