Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Integrin α3β1–dependent β-catenin phosphorylation links epithelial Smad signaling to cell contacts

Abstract

Injury-initiated epithelial to mesenchymal transition (EMT) depends on contextual signals from the extracellular matrix, suggesting a role for integrin signaling. Primary epithelial cells deficient in their prominent laminin receptor, alpha3beta1, were found to have a markedly blunted EMT response to TGF-beta1. A mechanism for this defect was explored in alpha3-null cells reconstituted with wild-type (wt) alpha3 or point mutants unable to engage laminin 5 (G163A) or epithelial cadherin (E-cadherin; H245A). After TGF-beta1 stimulation, wt epithelial cells but not cells expressing the H245A mutant internalize complexes of E-cadherin and TGF-beta1 receptors, generate phospho-Smad2 (p-Smad2)-pY654-beta-catenin complexes, and up-regulate mesenchymal target genes. Although Smad2 phosphorylation is normal, p-Smad2-pY654-beta-catenin complexes do not form in the absence of alpha3 or when alpha3beta1 is mainly engaged on laminin 5 or E-cadherin in adherens junctions, leading to attenuated EMT. These findings demonstrate that alpha3beta1 coordinates cross talk between beta-catenin and Smad signaling pathways as a function of extracellular contact cues and thereby regulates responses to TGF-beta1 activation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View