Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL

Abstract

Changing the length of a laser cavity is a simple technique for continuously tuning the wavelength of a laser but is rarely used for broad fractional tuning, with a notable exception of the vertical-cavity surface-emitting laser (VCSEL)1,2. This is because, to avoid mode hopping, the cavity must be kept optically short to ensure a large free spectral range compared to the gain bandwidth of the amplifying material. Terahertz quantum-cascade lasers are ideal candidates for such a short cavity scheme as they demonstrate exceptional gain bandwidths (up to octave spanning)3 and can be integrated with broadband amplifying metasurfaces4. We present such a quantum-cascade metasurface-based vertical-external-cavity surface-emitting laser (VECSEL) that exhibits over 20% continuous fractional tuning of a single laser mode. Such tuning is possible because the metasurface has subwavelength thickness, which allows lasing on low-order Fabry–Pérot cavity modes. Good beam quality and high output power are simultaneously obtained.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View