Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Electrocorticographic Encoding of Human Gait in the Leg Primary Motor Cortex

Abstract

While prior noninvasive (e.g., electroencephalographic) studies suggest that the human primary motor cortex (M1) is active during gait processes, the limitations of noninvasive recordings make it impossible to determine whether M1 is involved in high-level motor control (e.g., obstacle avoidance, walking speed), low-level motor control (e.g., coordinated muscle activation), or only nonmotor processes (e.g., integrating/relaying sensory information). This study represents the first invasive electroneurophysiological characterization of the human leg M1 during walking. Two subjects with an electrocorticographic grid over the interhemispheric M1 area were recruited. Both exhibited generalized γ-band (40-200 Hz) synchronization across M1 during treadmill walking, as well as periodic γ-band changes within each stride (across multiple walking speeds). Additionally, these changes appeared to be of motor, rather than sensory, origin. However, M1 activity during walking shared few features with M1 activity during individual leg muscle movements, and was not highly correlated with lower limb trajectories on a single channel basis. These findings suggest that M1 primarily encodes high-level gait motor control (i.e., walking duration and speed) instead of the low-level patterns of leg muscle activation or movement trajectories. Therefore, M1 likely interacts with subcortical/spinal networks, which are responsible for low-level motor control, to produce normal human walking.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View