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Abstract

BENCHMARKING THE ACCURACY OF

INERTIAL SENSORS IN CELL PHONES

by

Bin An

Many ubiquitous computing applications rely on data from a cell phone’s inertial sensors.

Unfortunately, the accuracy of this data is often unknown, which impedes predictive

analysis of applications that require high sensor accuracy (e.g., dead reckoning). This

work focuses on benchmarking the accuracy of the accelerometers and gyroscopes on a

cell phone. The cell phones are attached to a robotic arm, which provides ground truth

measurements. The misalignment between the cell phone’s and the robotic arm’s refer-

ence systems is computed using Horn’s algorithm for closed-form absolute orientation

estimation. Two cell phones (Apple’s iPhone 4 and Nokia’s N97) have been tested, and

results are provided in terms of random noise, error bias, error bias correlations, and

orientation reconstruction error.



This work is dedicate to my advisor,
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Chapter 1

Introduction

Recent years have witnessed great interest in the use of inertial sensors embed-

ded in cell phones. Nowadays most smartphones contain 3-axis MEMS accelerometers

which can be used to estimate the inclination of the phone with respect to the vertical

when the phone is static or under linear motion, and 3-axis rate gyroscopes that allow

for direct measurement of angular velocities. Data from cell phone inertial sensors can

be used for a variety of ubiquitous computing applications. Perhaps the simplest use of

an accelerometer is as a pedometer; in this case, the sensor only needs to detect foot-

steps, corresponding to strong acceleration values. Other applications call for a higher

level of accuracy. For example, gesture recognition [15, 2] requires precise motion and

inclination measurements. Another example is given by the use of inertial sensors to

assist visual tracking [14, 3, 9, 17] and for assisted camera pose estimation [7, 8]. An

excellent overview of inertial sensors is provided in [18].

An important component of my research is the development, implementation

1



and testing of algorithms for camera orientation estimation via inertial sensors, which

supplement image-based estimation. It is well known that a 3-axes accelerometer can

only provide a partial estimation of the orientation. Let the natural coordinate frame be

defined such that its X axis and Y axes are in the horizontal plane and the X axis points

to north, while the Z axis points down (in the direction of gravity). The cell phone’s

reference system is defined such that its X axis is orthogonal to the screen (pointing

towards the back of the phone), its Y axis is aligned with the shortest side of the screen

(pointing right), and its Z axis is aligned with cell phone’s longest side (pointing down).

I consider a cell phone with three accelerometers (aligned along the phone’s axes). If the

cell phone is static or moving with constant velocity, each accelerometer measures the

component of the gravity vector along its axis. This allows one to estimate the direction

of gravity in the phone coordinate frame. The roll and pitch of the phone with respect

to the natural frame can be estimated using the following equations:

β = arcsin (−ax/g)

α = arcsin (ay/g · cosβ)

(1.1)

where ax and ay are the measurements from the X-axis and Y -axis accelerometer sepa-

rately. g is the gravity acceleration(g = 9.8m/s2). α is the roll angle, the rotation angle

around X axis, while β is the pitch angle, the rotation angle around Y axis.

In order to compute the yaw (the rotation angle around Z axis), one needs

the help of either the digital compass or the onboard gyroscopes. Unfortunately, the

magnetic field cannot be assumed to be constant (due to external sources) so the compass

does not provide reliable measurements. The three gyroscopes, aligned with the three

2



axes of the phone, measure the angular velocity around 3 axes of the phone coordinate

frame. The angular velocity with respect to the inertial natural frame can be represented

by the following equations [7]:

˙α(t) = ωy cosβ(t)− ωx sinβ(t)

˙β(t) = ωz + (ωy sinβ(t) + ωx cosβ(t)) tanα(t)

˙γ(t) = (ωy sinβ(t) + ωx cosβ(t)) / cosα(t)

(1.2)

where α(t), β(t) and γ(t) are roll, pitch and yaw angles of the rotation of cell phone

in natural frame at a given time t. Integrating the angular velocity in equation (1.2)

gives the rotation angle. Integration, however, accumulates noise and may lead to

drift. Therefore some research fuses the accelerometer measurements and gyroscope

measurements together for robust orientation estimation, e.g. using a Kalman filter

[16, 11, 4].

In order to assess the accuracy of pose estimation as provided by the inertial

sensors, it is important to first measure the quality of such sensors. Accordingly, my

thesis research addressed a specific question: how can one assess the accuracy of the

inertial sensors contained in a mobile device such as a cell phone? Knowledge of the

precise characteristics of these sensors is critical for applications that require precise

inertial measurements. Examples include the use of the accelerometer as an inclinometer

(e.g. to support precise camera pointing) or as part of a dead reckoning system to track

the pose of the cell phone. Unfortunately, accuracy data is often not available. Even

when the model of the accelerometer mounted on a cell phone is disclosed, the data

sheet for the sensor is not always comprehensive.
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This article focuses on benchmarking the accelerometers in two commercially

available smartphones (the Nokia N97 and the iPhone 4) and the gyroscopes in the

iPhone 4. It is organized as follows: Ch.2 describes the cell phones considered in

my experiments and introduces the experimental setting along with the procedure for

misalignment estimation first. Ch.3 presents experimental results in terms of random

noise, error bias, error bias correlations, and orientation reconstruction error. Ch.4

provides the conclusions, highlights the shortcomings of our procedure, and suggests

alternative methods for accuracy benchmarking.
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Chapter 2

Methodology

In benchmarking the accuracy of accelerometers, I introduce a procedure for

the comparison of accelerometer data with ground truth values. The cell phone is

attached to the tip of a robotic arm, whose position and orientation can be controlled

with great accuracy. The misalignment between the onboard accelerometer’s reference

system and the arm’s reference system is estimated using Horn’s algorithm [12] from

multiple measurements. I use this procedure to benchmark the accuracy of two cell

phone models: an Apple iPhone 4, and a Nokia N97. In order to benchmark the

gyroscopes in the iPhone 4, I used a similar procedure. The cell phone is attached to

the tip of a robotic arm, whose rotation speed can be controlled with great accuracy.

The misalignment between the onboard gyroscope’s reference system and the arm’s

reference system is estimated using Horn’s algorithm [12] from multiple measurements

too.
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2.1 Benchmarking the Accuracy of Accelerometers in Cell

Phones

2.1.1 Devices

I have considered two different cell phone models in this work: an Apple iPhone

4 and a Nokia N97. Both cell phones have 3-axes MEMS accelerometers that are

easily accessible through an API. The iPhone 4 uses the ST LIS331DLH accelerometer

produced by ST Microelectronics. According to the provided data sheet 1, the ST

LIS331DLH produces 12 bit data with controllable range (from ±2.0 g to ±8.0 g) and

associated sensitivity (from ±1.0 milli-g/digit to ±3.9 milli-g/digit) and variable rate

(from 50 Hz to 1000 Hz). In the iPhone 4 implementation, the range is set to ±2.0 g,

while the reading rate is of 56 Hz (measured based on the time stamps associated with

each measurement). According to the Symbian S60 C++ Sensor API documentation,

the accelerometer onboard the N97 has range of ±2.0 g and produces 8 bit data. The

reading rate is of 10 Hz.

In order to measure the accuracy of the accelerometer measurements, I at-

tached each cell phone in turn to the tip of a DENSO VM-60B1 6-axis robotic arm via

a customized support (see Fig. 2.1). With a nominal position repeatability of ±0.07

mm 2, the DENSO VM-60B1 can be safely assumed to provide accurate “ground truth”

measurements of the position and attitude of the arm tip (defined with respect to a

1http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/

CD00213470.pdf
2http://www.aarobotics.co.uk/images/stories/assests/DENSO/Serie%20VM%201000-1300%

20mm_GB.pdf
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Figure 2.1: The experimental setting. Note the iPhone 4 attached to the DENSO
robotic arm.

given reference system whose Z axis is aligned with the direction of gravity).

The robotic arm’s control system allows one to precisely specify the arm tip’s

orientation with respect to the arm’s reference system. My experiments were conducted

by rotating the arm tip holding the cell phone to a number of stationary positions, and

keeping it still in each position for a few seconds while reading from the cell phone’s

accelerometers was taking place. The cell phone’s reference system is defined by the

three axes along which the accelerometers are oriented, assumed to be orthogonal to

each other. If the cell phone’s reference system is aligned with the arm tip’s reference

system, then the orientation of the cell phone with respect to the robotic arm’s reference

system is known at each time, along with the “ground truth” component of the gravity

vector onto the three axes −→a = (ax, ay, az). The difference between the ground truth

(−→a ) and the measured (
−→
â ) acceleration values defines the error −→e = (ex, ey, ez) for a
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given orientation.

2.1.2 Solving for Misalignment

The cell phone’s reference system is defined such that its X axis is orthogonal

to the screen (pointing towards the back of the phone), its Y axis is aligned with the

shortest side of the screen (pointing right), and its Z axis is aligned with cell phone’s

longest side (pointing down). When placing each phone on the robotic arm, I tried to

mechanically align these axes with the reference axes of the arm tip. However, a certain

amount of error has to be expected, meaning that the orientation of the cell phone is

only known up to a (constant but unknown) misalignment factor. In formulas:

−→a = RmR


0

0

1

 (2.1)

where Rm is the (unknown) misalignment rotation matrix, R is the (known) rotation

matrix relating the arm tip’s orientation to the robot’s reference system, and the entries

of −→a are expressed in gravity acceleration units (g = 9.8 m/s2).

In order to estimate Rm, I collected a large number of measurements of {−→a i}

for multiple (known) values of the rotation matrix {Ri}, and then used Horn’s algo-

rithm for closed-form absolute orientation estimation [12, 5]. Horn’s method expresses

the misalignment rotation matrix Rm by a quaternion rm, and solves the following
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minimization problem:

rm = argmin
||r||=1

∑
i

‖qi − rpir
∗‖2 (2.2)

where qi is the quaternion expression of the vector formed by the third column of Ri, pi

is the quaternion expression of
−→
â i (expressed in units of g), r∗ is the conjugate complex

of r, and the products and norms in the formula are expressed in quaternion algebra.

The solution of (2.2) is obtained by eigenvalue analysis. For more details, the reader is

referred to Horn’s original article [12].

Once the misalignment rotation represented by Rm is computed, I rotate the

measurement vector by R−1m in order to obtain “compensated” (or “re-aligned”) values.

2.1.3 Rotation Representation

I represent the rotation induced by the matrix R by Euler axis and rotation

3, as shown in Fig. 2.2. Note that the rotation axis is characterized by two parameters

(elevation and azimuth), and thus, in order to test all possible orientations of the cell

phone, one would have to consider the whole range of elevation (φ), azimuth (ψ), and

rotation (θ) angles. In fact, for my measurements, I can leave the azimuth angle fixed.

This is because I am only interested in the 2-D space spanned by the (constant modulus)

gravity vector as seen in the reference system of the cell phone. Any possible value of

−→a can be obtained by a rotating the cell phone by a certain rotation angle around a

certain axis with fixed azimuth.

3I note in passing that the quaternion representation of the misalignment rotation rm is readily
translated into Euler axis and rotation, making this representation particularly efficient.
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Y

! "

Figure 2.2: The chosen representation of rotation by rotation axis (with elevation φ)
and rotation angle θ. The grey parallelogram represents the shape of the cell phone.

In the experiments, I sampled the elevation angle φ uniformly between -80◦

and 80◦ (17 samples). For each elevation angle, I sampled the rotation angle θ uniformly

between -170◦ and 170◦ (35 samples). At each location, the arm was kept still for three

seconds; however, data was not acquired during the first and third second, to avoid the

risk of residual motion.

2.2 Benchmarking the Accuracy of Gyroscopes in Cell

Phones

2.2.1 Devices

The Apple iPhone 4 has 3-axes MEMS gyroscopes that are easily accessed

through an API. The iPhone 4 uses the ST L3G4200D angular rate sensor produced
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by ST Microelectronics. According to the provided data sheet 4, the ST L3G4200D

produces 16 bit data with controllable range from ±250 degrees/sec to ±2000 degrees/sec

and associated sensitivity and controllable output rate (100/200/400/800Hz). In the

iPhone 4 implementation, the range is set to ±2000 degree/sec, while the reading rate

is of 56 Hz (measured based on the time stamps associated with each measurement).

My experiments were conducted by rotating the robotic arm tip holding the

cell phone at different speed about different stationary axes while reading from the

cell phone’s gyroscopes. The cell phone’s reference system is defined by the three axes

along which the gyroscopes are oriented, assumed to be orthogonal to each other. If

the cell phone’s reference system is aligned with the arm tip’s reference system, then

rotation velocity and orientation of rotation axis of the cell phone with respect to the

robotic arm’s reference system is known at each time, along with the “ground truth”

components of angular vector onto the three axes −→ω = (ωx, ωy, ωz). The difference

between the ground truth (−→ω ) and the measured (
−→
ω̂ ) angular velocity vector defines

the error −→e = (ex, ey, ez) for a given rotation axis (φ, ψ) and the magnitude of the

rotation velocity v ≡ ||−→ω ||.

2.2.2 Solving for Misalignment

Similar to the method described in section 2.1.2, if I define R as the direction

cosine matrix from the robot frame to phone frame, the objective is to find the optimal

4http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/

CD00265057.pdf
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solution of R such that the error is minimum.

R̂ = argmin
R

N∑
i=1

∥∥~ω′i −R~ωi

∥∥2 (2.3)

where ~ωi and ~ω′i represent the controlled and measured angular velocity vector seper-

ately in the ith experiment, i = 1, 2, ..., N . Horn’s method [12] expresses Eq.2.3 with

quaternions:

r̂ = argmin
r

N∑
i=1

∥∥q′i − r qi r
∗∥∥2 (2.4)

where qi and qi
′ are the quaternion expression of the 3D vector ~ωi and ~ω′i respectively,

r is the quaternion expression of the misalignment rotation matrix R. The solution

of (2.4) is obtained by eigenvalue analysis. For more details, the reader is referred to

Horn’s original article [12].

Once the misalignment rotation represented by R̂ is computed, I rotate the

measurement vector by R̂−1 in order to obtain “compensated” (or “re-aligned”) values.
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Chapter 3

Experimental Results

3.1 Benchmarking the Accuracy of Accelerometers

3.1.1 Noise (Random Error)

By noise (n) I mean the difference between the measured acceleration values

and their average during the acquisition period. More precisely: the noise n(φ, θ, k) for

the k-th sample during the acquisition period for elevation φ and rotation θ is defined

by:

n(φ, θ, k) = â(φ, θ, k)− ā(φ, θ) (3.1)

where ā(φ, θ) is the mean of the measured values within the acquisition period. The

variance of the measured data is thus defined as the mean of n2(φ, θ, k) over all elevation

and rotation angles and over all samples in each acquisition period. The standard

deviation is, as always, the squared root of the variance. Noise is due to various cases

(e.g., thermal noise), compounded by quantization effects.
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σx σy σz
iPhone 4 0.4 0.5 0.3

N97 9.6 10.5 6.8

Table 3.1: The standard deviation of noise over the three accelerometer axes for the
iPhone 4 and the N97 cell phones. All units are in milli-g =10−3 · 9.8 m/s2.

Tab. 3.1 shows the measured standard deviation of the noise over the three

accelerometer axes for both cell phones considered. These measurements are consistent

with the expected quantization noise, which, as well known [10], has standard deviation

equal to ∆/
√

12, where ∆ is the quantization step. Assuming that the data is uniformly

quantized between -2 g and 2 g for both cell phones, the quantization interval ∆ is equal

to 4 g/212 = 1 milli-g for the iPhone 4 and 4 g/28 = 16 milli-g for the N97, resulting

in expected noise standard deviations of 0.3 milli-g for the iPhone 4 and of 4.5 milli-g

for the N97. The measured noise standard deviation is shown to be no larger than

approximately twice the quantization noise standard deviation.

3.1.2 Bias

The bias (ē) is defined the difference between the mean measured value within

an acquisition period and its value as predicted by knowledge of the actual orientation

of the camera. In formulas:

ē(φ, θ) = ā(φ, θ)− a(φ, θ) (3.2)

The bias thus represents the systematic measurement error of the sensors.

Fig. 3.1 shows, for each accelerometer axis, the histogram of the bias ē. It can

be noticed that mean of the bias (the average bias) is noticeably non-null in some cases

14
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Figure 3.1: Histograms of the bias ē for the iPhone 4 (Top) and for the N97 (Bottom).
Left column: X axis. Middle column: Y axis. Right column: Z axis. All units are in
g = 9.8 m/s2.

ex,RMS ey,RMS ez,RMS

before bias average subtraction

iPhone 4 22.5 21.1 9.7

N97 17.4 25.9 21.9

after bias average subtraction

iPhone 4 18.8 20.1 9.5

N97 17.3 20.2 21.2

Table 3.2: The root mean square error of the bias ē for the three accelerometer axes for
the iPhone 4 and the N97 cell phones. All units are in milli-g =10−3 · 9.8 m/s2.

(in particular, for the X axis for the iPhone, and for the Y axis for the N97). In fact,

the average bias could be removed by simply subtracting it from the measured signal.

Tab. 3.2 shows the root mean square (RMS) of the bias for each axis before and after

average bias subtraction. Note in passing that the bias RMS computed on the measured

data before re-alignment (as described in Sec. 2.1.2) is about 30 times (or more) higher,

providing evidence that the re-alignment procedure is effective.

Fig. 3.2 represents the bias ē as a function of (φ, θ). It is interesting to note
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Figure 3.2: Representation of the bias ē as a function of elevation φ and rotation θ (in
degree) for the iPhone 4 (top) and the N97 (bottom). Left column: X axis. Middle
column: Y axis. Right column: Z axis. The bias is represented in units of g = 9.8 m/s2.

that the bias is well correlated to the cell phone orientation. The fact that the bias

is more “discontinuous” (as a function of φ and θ) for the N97 than for the iPhone 4

could be imputed to the N97’s larger noise variance, combined with the smaller number

of samples per acquisition interval considered, which concur to higher variance in the

estimation of the average values ā(φ, θ) and thus of the bias.

A scattergram of bias ē vs. acceleration a for each axis is shown in Fig. 3.3.

Two observations can be drawn from these plots. Firstly, there seems to be only a weak

correlation between bias ē and the gravity value a at each axis. For example, the bias

in the Z axis of the iPhone 4 has higher variance for gravity values that are close to 0,

while the bias in the Z axis of the iPhone 4 has higher variance for gravity values close

to g. Secondly, the point cloud for the iPhone 4 is characterized by a highly correlated

pattern (a set of curves), rather than being randomly distributed as for the N97. I
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ē
y

−1 −0.5 0 0.5 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

az

ē
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Figure 3.3: Bias vs. acceleration for the iPhone 4 (top) and the N97 (bottom). Left
column: X axis. Middle column: Y axis. Right column: Z axis. All units are in
g = 9.8 m/s2.

conjecture that the vector (a, ē) moves on a smooth curve as the cell phone is being

rotated, and that different curves correspond to different elevations.

Fig. 3.4 shows scattergrams of bias relative to one axis against bias relative to

another axis. These plots are meant to highlight any correlation between axes. Indeed,

it is seen that, for the iPhone 4, the bias on the Y axis correlates negatively with the

bias on the Z axis.

3.1.3 Orientation Estimation Error

The measured acceleration values may be used to estimate the orientation of

the cell phone, under the assumption that the azimuth is fixed. It should be noted that

the relation between the acceleration −→a and the orientation (expressed in Euler axis

and rotation) is highly non-linear, hence the same bias error may result in larger or
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ēy

ē
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ēx

ē
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Figure 3.4: Bias on one axis vs. bias on another axis for the iPhone 4 (top) and the
N97 (bottom). Left column: X axis. Middle column: Y axis. Right column: Z axis.
All units are in g = 9.8 m/s2.

smaller error on the estimated orientation for a given orientation. Note also that when

the rotation angle θ is equal to 0◦, the elevation angle φ of the rotating axis cannot be

estimated. Likewise, the rotation angle θ cannot be estimated when the elevation angle

φ is equal to ±90◦. As shown in Fig. 3.5, within the range of orientations considered

in our example, the error in elevation estimation ranges between −1.8◦ and 3.4◦ for the

iPhone 4 and between −1.5◦ and 5.2◦ for the N97, while the error in rotation estimation

ranges between −11.5◦ and 8.7◦ for the iPhone 4 and −14.9◦ and between 15.2◦ for the

N97.

In Fig. 3.6, I show the residual rotation and elevation angle after rotating back

by the inverse of the rotation estimated by the sensors. In the ideal case of correct

acceleration measurement, the rotation would be estimated perfectly, and the residual

rotation would be null. Note in passing that Fig. 3.6 provides indirect evidence that
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Figure 3.5: Representation of the orientation estimation error as a function of elevation
φ and rotation θ for the iPhone 4 (left) and the N97 (right). Top: error in the estimation
of the elevation angle φ. Bottom: error in the estimation of the rotation angle θ. All
units are in degree.

the dependence of the error bias on the device’s orientation should not be attributed

to errors in the estimation of the misalignment rotation Rm. If this were the case, the

residual would be constant for all orientations - which, as seen in Fig. 3.6, is not true

in my case.

3.2 Benchmarking the Accuracy of Gyroscopes

In the experiments of benchmarking the accuracy of gyroscopes, I sampled both

the elevation angle φ and the azimuth angle ψ of the rotation axis in {0,±30,±60,±90}

degrees. For each axis, the arm was rotated at four different speed {13, 46, 78, 111}

degrees/sec. Data was not acquired during the first and last 3 seconds, in order to allow

the system to reach a stationary velocity.
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Figure 3.6: Representation of the residual elevation and rotation after rotating back
according to the inverse of the estimated rotation (based on sensor data), as a function
of elevation φ and rotation θ for the iPhone 4 (left) and the N97 (right). Top: residual
elevation angle φ. Bottom:residual rotation angle θ. All units are in degree.

σx σy σz
iPhone 4 0.3 0.3 0.4

Table 3.3: The standard deviation of noise over the three gyroscope axes for the iPhone
4. All units are in degree/sec.

3.2.1 Noise (Random Error)

Tab. 3.3 shows the measured standard deviation of the noise over the three

gyroscope axes for iPhone 4. These measurements are consistent with the expected

quantization noise, which, using the methods in section.3, is 4000/216/
√

12 = 0.0176

degrees/sec. The measured noise standard deviation is shown to be no larger than

approximately twice the quantization noise standard deviation.
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Figure 3.7: Histograms of the bias ē for the iPhone 4. Left: X axis. Middle: Y axis.
Right: Z axis. All units are in degree/sec.

ex,RMS ey,RMS ez,RMS

before bias average subtraction

iPhone 4 0.15 0.13 0.17

after bias average subtraction

iPhone 4 0.14 0.12 0.17

Table 3.4: The root mean square error of the bias ē for the three gyroscope axes for the
iPhone 4. All units are in degree/sec.

3.2.2 Bias

Fig. 3.7 shows, for each gyroscope axis, the histogram of the bias ē. Tab. 3.4

shows the root mean square (RMS) of the bias for each axis before and after average

bias subtraction. Note that the bias RMS computed on the measured data before re-

alignment (as described in Sec. 2.2.2) is about 10 times higher, providing evidence that

the re-alignment procedure is effective.
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Chapter 4

Conclusions

This contribution has introduced a methodology for precise benchmarking of

the inertial sensors within a mobile device. Use of a precisely controllable robotic arm

allows for repeatable, accurate ground truth measurements. Even if a robotic arm is

not available, one could still perform similar measurements by attaching a high-quality

sensor to the device, and comparing the readings of the two sensors. Even in this case,

the misalignment between the external, high-quality sensor and the internal sensor being

assessed need to be estimated, for example using the procedure proposed in Sec. 2.1.2

and Sec. 2.2.2.

The proposed benchmarking method in this thesis, while accurate, has a num-

ber of shortcomings. Firstly, it can only measure the accuracy of the device’s accelerom-

eters within ±1 g. Although for applications that require estimating the inclination of

the cell phone this range of measurements is sufficient, other applications may require

measurement of larger or smaller accelerations. This could be achieved by moving the
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device in high-acceleration trajectories (e.g., shaking it, or perhaps mounting it on a ro-

tating arm). However, in this case, it is critical that the measurements from the internal

and the external high-quality accelerometer (whether attached to the device, or in the

robotic arm holding the device) should be time-aligned, for example by means of time

stamps and clock synchronization. We were able to avoid this procedure by only taking

measurements when the cell phone was in stable positions, as explained in Sec. 2.1.3.

The experimental data with accelerometers in Apple iPhone 4 and the Nokia

N97 has highlighted the presence of a non-negligible bias that depends on the orientation.

This bias can be as high as 0.1 g. Subtracting the mean component of the bias from the

measurements provides a slight improvement in terms of RMS. The bias error induces

an error of up to several degrees when estimating the cell phone’s orientation based on

data from the accelerometer that is slightly higher for the N97 than for the iPhone 4.

In addition to bias, there is a random noise component that is markedly higher for the

N97 (up to 10 milli-g) than for the iPhone 4, consistent with the fact that the data

from the iPhone 4 is quantized at 12 bits/sample vs. 8 bits/sample for the N97.

More work is needed to understand why the bias ē correlates with the cell

phone’s orientation (see Fig. 3.2) while only loosely correlating with the actual acceler-

ation (see Fig. 3.3). One may also conjecture that the accelerometer axes may not be

precisely orthogonal to each other. This could also explain the correlation between the

bias on the Y and Z axes for the iPhone 4 that is clearly noticeable in Fig 3.4.
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