Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Redox-Detecting Deep Learning for Mechanism Discernment in Cyclic Voltammograms of Multiple Redox Events.

Abstract

In electrochemical analysis, mechanism assignment is fundamental to understanding the chemistry of a system. The detection and classification of electrochemical mechanisms in cyclic voltammetry set the foundation for subsequent quantitative evaluation and practical application, but are often based on relatively subjective visual analyses. Deep-learning (DL) techniques provide an alternative, automated means that can support experimentalists in mechanism assignment. Herein, we present a custom DL architecture dubbed as EchemNet, capable of assigning both voltage windows and mechanism classes to electrochemical events within cyclic voltammograms of multiple redox events. The developed technique detects over 96% of all electrochemical events in simulated test data and shows a classification accuracy of up to 97.2% on redox events with 8 known mechanisms. This newly developed DL model, the first of its kind, proves the feasibility of redox-event detection and electrochemical mechanism classification with minimal a priori knowledge. The DL model will augment human researchers productivity and constitute a critical component in a general-purpose autonomous electrochemistry laboratory.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View