- Main
Dual D-brane actions in nonrelativistic string theory
Abstract
We study worldvolume actions for D-branes coupled to the worldvolume U(1) gauge field and Ramond-Ramond (RR) potentials in nonrelativistic string theory. This theory is a self-contained corner of relativistic string theory and has a string spectrum with a Galilean-invariant dispersion relation. We therefore refer to such D-branes in nonrelativistic string theory as nonrelativistic D-branes. We focus on the bosonic fields in spacetime and also couple the D-branes to general closed string geometry, Kalb-Ramond, and dilaton background fields. We dualize nonrelativistic D-branes by performing a duality transformation on the worldvolume U(1) gauge field and uncover novel dual D-brane actions. This generalizes familiar properties, such as the SL(2, ℤ) duality in Type IIB superstring theory and the relation between Type IIA superstring and M-theory, to nonrelativistic string and M-theory. Moreover, we generalize the limit of string theory, in which nonrelativistic string theory arises, to include RR potentials. This stringy limit induces a codimension-two foliation structure in spacetime. This spacetime geometry is non-Riemannian and known as string Newton-Cartan geometry. In contrast, nonrelativistic M-theory that we probe by dualizing D2- and D4-branes in nonrelativistic string theory arises as a membrane limit of M-theory, and it is coupled to a membrane Newton-Cartan geometry with a codimension-three foliation structure. We also discuss T-duality in nonrelativistic string theory and generalize Buscher rules from earlier work to include RR potentials.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-