Skip to main content
eScholarship
Open Access Publications from the University of California

Research Monograph

Open Water Processes of the San Francisco Estuary: From Physical Forcing to Biological Responses

https://doi.org/10.15447/sfews.2004v2iss1art1

This paper reviews the current state of knowledge of the open waters of the San Francisco Estuary. This estuary is well known for the extent to which it has been altered through loss of wetlands, changes in hydrography, and the introduction of chemical and biological contaminants. It is also one of the most studied estuaries in the world, with much of the recent research effort aimed at supporting restoration efforts. In this review I emphasize the conceptual foundations for our current understanding of estuarine dynamics, particularly those aspects relevant to restoration. Several themes run throughout this paper. First is the critical role physical dynamics play in setting the stage for chemical and biological responses. Physical forcing by the tides and by variation in freshwater input combine to control the movement of the salinity field, and to establish stratification, mixing, and dilution patterns throughout the estuary. Many aspects of estuarine dynamics respond to interannual variation in freshwater flow; in particular, abundance of several estuarine-dependent species of fish and shrimp varies positively with flow, although the mechanisms behind these relationships are largely unknown. The second theme is the importance of time scales in determining the degree of interaction between dynamic processes. Physical effects tend to dominate when they operate at shorter time scales than biological processes; when the two time scales are similar, important interactions can arise between physical and biological variability. These interactions can be seen, for example, in the response of phytoplankton blooms, with characteristic time scales of days, to stratification events occurring during neap tides. The third theme is the key role of introduced species in all estuarine habitats; particularly noteworthy are introduced waterweeds and fishes in the tidal freshwater reaches of the estuary, and introduced clams there and in brackish water. The final theme is the rather heterogeneous set of results from monitoring and research in the estuary. For example, some topics have been subjects of intense activity both in research and monitoring (e.g., physical dynamics of the upper estuary, phytoplankton blooms), while others have received little attention (e.g., microzooplankton). In addition, both research and monitoring have emphasized some regions of the estuary (e.g., the Sacramento-San Joaquin Delta) over others (e.g., San Pablo Bay). In addition, ecological modeling and synthesis has emphasized lower trophic levels over higher. Opportunities for restoration in the open waters of the estuary are somewhat limited by the lack of scientific basis for restoration, and the difficulty in detecting ecosystem responses in the context of high natural variability.