Skip to main content
Open Access Publications from the University of California
Cover page of Fluorous-Soluble Metal Chelate for Sensitive Fluorine-19 Magnetic Resonance Imaging Nanoemulsion Probes.

Fluorous-Soluble Metal Chelate for Sensitive Fluorine-19 Magnetic Resonance Imaging Nanoemulsion Probes.


Fluorine-19 MRI is an emerging cellular imaging approach, enabling lucid, quantitative "hot-spot" imaging with no background signal. The utility of 19F-MRI to detect inflammation and cell therapy products in vivo could be expanded by improving the intrinsic sensitivity of the probe by molecular design. We describe a metal chelate based on a salicylidene-tris(aminomethyl)ethane core, with solubility in perfluorocarbon (PFC) oils, and a potent accelerator of the 19F longitudinal relaxation time ( T1). Shortening T1 can increase the 19F image sensitivity per time and decrease the minimum number of detectable cells. We used the condensation between the tripodal ligand tris-1,1,1-(aminomethyl)ethane and salicylaldehyde to form the salicylidene-tris(aminomethyl)ethane chelating agent (SALTAME). We purified four isomers of SALTAME, elucidated structures using X-ray scattering and NMR, and identified a single isomer with high PFC solubility. Mn4+, Fe3+, Co3+, and Ga3+ cations formed stable and separable chelates with SALTAME, but only Fe3+ yielded superior T1 shortening with modest line broadening at 3 and 9.4 T. We mixed Fe3+ chelate with perfluorooctyl bromide (PFOB) to formulate a stable paramagnetic nanoemulsion imaging probe and assessed its biocompatibility in macrophages in vitro using proliferation, cytotoxicity, and phenotypic cell assays. Signal-to-noise modeling of paramagnetic PFOB shows that sensitivity enhancement of nearly 4-fold is feasible at clinical magnetic field strengths using a 19F spin-density-weighted gradient-echo pulse sequence. We demonstrate the utility of this paramagnetic nanoemulsion as an in vivo MRI probe for detecting inflammation macrophages in mice. Overall, these paramagnetic PFC compounds represent a platform for the development of sensitive 19F probes.

Cover page of Nerve-targeted probes for fluorescence-guided intraoperative imaging.

Nerve-targeted probes for fluorescence-guided intraoperative imaging.


A fundamental goal of many surgeries is nerve preservation, as inadvertent injury can lead to patient morbidity including numbness, pain, localized paralysis and incontinence. Nerve identification during surgery relies on multiple parameters including anatomy, texture, color and relationship to surrounding structures using white light illumination. We propose that fluorescent labeling of nerves can enhance the contrast between nerves and adjacent tissue during surgery which may lead to improved outcomes. Methods: Nerve binding peptide sequences including HNP401 were identified by phage display using selective binding to dissected nerve tissue. Peptide dye conjugates including FAM-HNP401 and structural variants were synthesized and screened for nerve binding after topical application on fresh rodent and human tissue and in-vivo after systemic IV administration into both mice and rats. Nerve to muscle contrast was quantified by measuring fluorescent intensity after topical or systemic administration of peptide dye conjugate. Results: Peptide dye conjugate FAM-HNP401 showed selective binding to human sural nerve with 10.9x fluorescence signal intensity (1374.44 ± 425.96) compared to a previously identified peptide FAM-NP41 (126.17 ± 61.03). FAM-HNP401 showed nerve-to-muscle contrast of 3.03 ± 0.57. FAM-HNP401 binds and highlight multiple human peripheral nerves including lower leg sural, upper arm medial antebrachial as well as autonomic nerves isolated from human prostate. Conclusion: Phage display has identified a novel peptide that selectively binds to ex-vivo human nerves and in-vivo using rodent models. FAM-HNP401 or an optimized variant could be translated for use in a clinical setting for intraoperative identification of human nerves to improve visualization and potentially decrease the incidence of intra-surgical nerve injury.

Cover page of Impact of MMP-2 and MMP-9 enzyme activity on wound healing, tumor growth and RACPP cleavage.

Impact of MMP-2 and MMP-9 enzyme activity on wound healing, tumor growth and RACPP cleavage.


Matrix metalloproteinases-2 and -9 (MMP-2/-9) are key tissue remodeling enzymes that have multiple overlapping activities critical for wound healing and tumor progression in vivo. To overcome issues of redundancy in studying their functions in vivo, we created MMP-2/-9 double knockout (DKO) mice in the C57BL/6 background to examine wound healing. We then bred the DKO mice into the polyomavirus middle T (PyVmT) model of breast cancer to analyze the role of these enzymes in tumorigenesis. Breeding analyses indicated that significantly fewer DKO mice were born than predicted by Mendelian genetics and weaned DKO mice were growth compromised compared with wild type (WT) cohorts. Epithelial wound healing was dramatically delayed in adult DKO mice and when the DKO was combined with the PyVmT oncogene, we found that the biologically related process of mammary tumorigenesis was inhibited in a site-specific manner. To further examine the role of MMP-2/-9 in tumor progression, tumor cells derived from WT or DKO PyVmT transgenic tumors were grown in WT or DKO mice. Ratiometric activatable cell penetrating peptides (RACPPs) previously used to image cancer based on MMP-2/-9 activity were used to understand differences in MMP activity in WT or knockout syngeneic tumors in WT and KO animals. Analysis of an MMP-2 selective RACPP in WT or DKO mice bearing WT and DKO PyVmT tumor cells indicated that the genotype of the tumor cells was more important than the host stromal genotype in promoting MMP-2/-9 activity in the tumors in this model system. Additional complexities were revealed as the recruitment of host macrophages by the tumor cells was found to be the source of the tumor MMP-2/-9 activity and it is evident that MMP-2/-9 from both host and tumor is required for maximum signal using RACPP imaging for detection. We conclude that in the PyVmT model, the majority of MMP-2/-9 activity in mammary tumors is associated with host macrophages recruited into the tumor rather than that produced by the tumor cells themselves. Thus therapies that target tumor-associated macrophage functions have the potential to slow tumor progression.

Cover page of Detection of Subclinical Arthritis in Mice by a Thrombin Receptor-Derived Imaging Agent.

Detection of Subclinical Arthritis in Mice by a Thrombin Receptor-Derived Imaging Agent.


OBJECTIVE:Functional imaging of synovitis could improve both early detection of rheumatoid arthritis (RA) and long-term outcomes. Given the intersection of inflammation with coagulation protease activation, this study was undertaken to examine coagulation protease activities in arthritic mice with a dual-fluorescence ratiometric activatable cell-penetrating peptide (RACPP) that has a linker, norleucine (Nle)-TPRSFL, with a cleavage site for thrombin. METHODS:K/BxN-transgenic mice with chronic arthritis and mice with day 1 passive serum-transfer arthritis were imaged in vivo for Cy5:Cy7 emission ratiometric fluorescence from proteolytic cleavage and activation of RACPPNleTPRSFL . Joint thickness in mice with serum-transfer arthritis was measured from days 0 to 10. The cleavage-evoked release of Cy5-tagged tissue-adhesive fragments enabled microscopic correlation with immunohistochemistry for inflammatory markers. Thrombin dependence of ratiometric fluorescence was tested by ex vivo application of RACPPNleTPRSFL and argatroban to cryosections obtained from mouse hind paws on day 1 of serum-transfer arthritis. RESULTS:In chronic arthritis, RACPPNleTPRSFL fluorescence ratios of Cy5:Cy7 emission were significantly higher in diseased swollen ankles of K/BxN-transgenic mice than in normal mouse ankles. A high ratio of RACPPNleTPRSFL fluorescence in mouse ankles and toes on day 1 of serum-transfer arthritis correlated with subsequent joint swelling. Foci of high ratiometric fluorescence localized to inflammation, as demarcated by immune reactivity for citrullinated histones, macrophages, mast cells, and neutrophils, in soft tissue on day 1 of serum-transfer arthritis. Ex vivo application of RACPPNleTPRSFL to cryosections obtained from mice on day 1 of serum-transfer arthritis produced ratiometric fluorescence that was inhibited by argatroban. CONCLUSION:RACPPNleTPRSFL activation detects established experimental arthritis, and the detection of inflammation by RACPPNleTPRSFL on day 1 of serum-transfer arthritis correlates with disease progression.

Cover page of Early detection of squamous cell carcinoma in carcinogen induced oral cancer rodent model by ratiometric activatable cell penetrating peptides.

Early detection of squamous cell carcinoma in carcinogen induced oral cancer rodent model by ratiometric activatable cell penetrating peptides.



Ratiometric cell-penetrating-peptides (RACPP) are hairpin-shaped molecules that undergo cleavage by tumor-associated proteases resulting in measurable Cy5:Cy7 fluorescence ratiometric change to label cancer in vivo. We evaluated an MMP cleavable RACPP for use in the early detection of malignant lesions in a carcinogen-induced rodent tumor model.


Wild-type immune-competent mice were given 4-nitroquinoline-oxide (4NQO) for 16weeks. Oral cavities from live mice that had been intravenously administered MMP cleavable PLGC(Me)AG-RACPP were serially imaged from week 11 through week 21 using white-light reflectance and Cy5:Cy7 ratiometric fluorescence.


In an initial study we found that at week 21 nearly all mice (13/14) had oral cavity lesions, of which 90% were high-grade dysplasia or invasive carcinoma. These high-grade lesions were identifiable with white light reflectance and RACPP Cy5:Cy7 ratiometric fluorescence with similar detectability, Area Under Curve (AUC) for RACPP detection was 0.97 (95% Confidence interval (CI)=0.92-1.02, p<0.001), sensitivity=89%, specificity=100%. In a follow up study, oral cavity lesions generated by 4NQO were imaged and histologically analyzed at weeks 16, 18 and 21. In this study we showed that RACPP-fluorescence detection positively identified 15 squamous cell carcinomas (in 6 separate mice) that were poorly visible or undetectable by white light reflectance.


RACPP ratiometric fluorescence can be used to accurately detect carcinogen-induced carcinoma in immunocompetent mice that are poorly visible or undetectable by white light reflectance.

18F-positron-emitting/fluorescent labeled erythrocytes allow imaging of internal hemorrhage in a murine intracranial hemorrhage model.


An agent for visualizing cells by positron emission tomography is described and used to label red blood cells. The labeled red blood cells are injected systemically so that intracranial hemorrhage can be visualized by positron emission tomography (PET). Red blood cells are labeled with 0.3 µg of a positron-emitting, fluorescent multimodal imaging probe, and used to non-invasively image cryolesion induced intracranial hemorrhage in a murine model (BALB/c, 2.36 × 108 cells, 100 µCi, <4 mm hemorrhage). Intracranial hemorrhage is confirmed by histology, fluorescence, bright-field, and PET ex vivo imaging. The low required activity, minimal mass, and high resolution of this technique make this strategy an attractive alternative for imaging intracranial hemorrhage. PET is one solution to a spectrum of issues that complicate single photon emission computed tomography (SPECT). For this reason, this application serves as a PET alternative to [99mTc]-agents, and SPECT technology that is used in 2 million annual medical procedures. PET contrast is also superior to gadolinium and iodide contrast angiography for its lack of clinical contraindications.

Cover page of The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins.

The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins.


Over the past 20 years, protein engineering has been extensively used to improve and modify the fundamental properties of fluorescent proteins (FPs) with the goal of adapting them for a fantastic range of applications. FPs have been modified by a combination of rational design, structure-based mutagenesis, and countless cycles of directed evolution (gene diversification followed by selection of clones with desired properties) that have collectively pushed the properties to photophysical and biochemical extremes. In this review, we provide both a summary of the progress that has been made during the past two decades, and a broad overview of the current state of FP development and applications in mammalian systems.

Gelatinase activity imaged by activatable cell-penetrating peptides in cell-based and in vivo models of stroke.


Matrix metalloproteinases (MMPs), particularly gelatinases (MMP-2/-9), are involved in neurovascular impairment after stroke. Detection of gelatinase activity in vivo can provide insight into blood-brain barrier disruption, hemorrhage, and nerve cell injury or death. We applied gelatinase-activatable cell-penetrating peptides (ACPP) with a cleavable l-amino acid linker to examine gelatinase activity in primary neurons in culture and ischemic mouse brain in vivo We found uptake of Cy5-conjugated ACPP (ACPP-Cy5) due to gelatinase activation both in cultured neurons exposed to n-methyl-d-aspartate and in mice after cerebral ischemia. Fluorescence intensity was significantly reduced when cells or mice were treated with MMP inhibitors or when a cleavage-resistant ACPP-Cy5 was substituted. We also applied an ACPP dendrimer (ACPPD) conjugated with multiple Cy5 and/or gadolinium moieties for fluorescence and magnetic resonance imaging (MRI) in intact animals. Fluorescence analysis showed that ACPPD was detected in sub-femtomole range in ischemic tissues. Moreover, MRI and inductively coupled plasma mass spectrometry revealed that ACPPD produced quantitative measures of gelatinase activity in the ischemic region. The resulting spatial pattern of gelatinase activity and neurodegeneration were very similar. We conclude that ACPPs are capable of tracing spatiotemporal gelatinase activity in vivo, and will therefore be useful in elucidating mechanisms of gelatinase-mediated neurodegeneration after stroke.

Sensitive in vivo Visualization of Breast Cancer Using Ratiometric Protease-activatable Fluorescent Imaging Agent, AVB-620.


With the goal of improving intraoperative cancer visualization, we have developed AVB-620, a novel intravenously administered, in vivo fluorescent peptide dye conjugate that highlights malignant tissue and is optimized for human use. Matrix metalloproteinases (MMPs) hydrolyze AVB-620 triggering tissue retention and a ratiometric fluorescence color change which is visualized using camera systems capable of imaging fluorescence and white light simultaneously. AVB-620 imaging visualizes primary tumors and demonstrated high in vivo diagnostic sensitivity and specificity (both >95%) for identifying breast cancer metastases to lymph nodes in two immunocompetent syngeneic mouse models. It is well tolerated and single-dose toxicology studies in rats determined a no-observed-adverse-effect-level (NOAEL) at >110-fold above the imaging and estimated human dose. Protease specificity and hydrolysis kinetics were characterized and compared using recombinant MMPs. To understand the human translation potential, an in vitro diagnostic study was conducted to evaluate the ability of AVB-620 to differentiate human breast cancer tumor from healthy adjacent tissue. Patient tumor tissue and healthy adjacent breast tissue were homogenized, incubated with AVB-620, and fluorogenic responses were compared. Tumor tissue had 2-3 fold faster hydrolysis than matched healthy breast tissue; generating an assay sensitivity of 96% and specificity of 88%. AVB-620 has excellent sensitivity and specificity for identifying breast cancer in mouse and human tissue. Significant changes were made in the design of AVB-620 relative to previous ratiometric protease-activated agents. AVB-620 has pharmaceutical properties, fluorescence ratio dynamic range, usable diagnostic time window, a scalable synthesis, and a safety profile that have enabled it to advance into clinical evaluation in breast cancer patients.

Cover page of Multicolor Electron Microscopy for Simultaneous Visualization of Multiple Molecular Species.

Multicolor Electron Microscopy for Simultaneous Visualization of Multiple Molecular Species.


Electron microscopy (EM) remains the primary method for imaging cellular and tissue ultrastructure, although simultaneous localization of multiple specific molecules continues to be a challenge for EM. We present a method for obtaining multicolor EM views of multiple subcellular components. The method uses sequential, localized deposition of different lanthanides by photosensitizers, small-molecule probes, or peroxidases. Detailed view of biological structures is created by overlaying conventional electron micrographs with pseudocolor lanthanide elemental maps derived from distinctive electron energy-loss spectra of each lanthanide deposit via energy-filtered transmission electron microscopy. This results in multicolor EM images analogous to multicolor fluorescence but with the benefit of the full spatial resolution of EM. We illustrate the power of this methodology by visualizing hippocampal astrocytes to show that processes from two astrocytes can share a single synapse. We also show that polyarginine-based cell-penetrating peptides enter the cell via endocytosis, and that newly synthesized PKMζ in cultured neurons preferentially localize to the postsynaptic membrane.