Skip to main content
eScholarship
Open Access Publications from the University of California

To meet the challenges of marine conservation, the Center for Marine Biodiversity and Conservation (CMBC) was established at the Scripps Institution of Oceanography (SIO) in May 2001. Its goals are:

  • Investigation: Assess the state of marine ecosystems now and in the past and develop predictive models for the future
  • Education: Train new marine biodiversity and conservation scientists in the United States and around the world
  • Integration: Develop novel interdisciplinary approaches linking the biological, physical, social and informatic sciences
  • Communication: Increase public understanding of scientific issues and provide sound scientific analyses to policy makers
  • Application: Design technically sophisticated, regionally appropriate strategies to prevent and reverse biodiversity collapse

Dr. Lisa Levin, Director
http://cmbc.ucsd.edu
cmbc@ucsd.edu

Cover page of A genomic catalog of Earth's microbiomes.

A genomic catalog of Earth's microbiomes.

(2021)

The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth's continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.

Cover page of Feasibility of using alternative swabs and storage solutions for paired SARS-CoV-2 detection and microbiome analysis in the hospital environment.

Feasibility of using alternative swabs and storage solutions for paired SARS-CoV-2 detection and microbiome analysis in the hospital environment.

(2021)

Background

Determining the role of fomites in the transmission of SARS-CoV-2 is essential in the hospital setting and will likely be important outside of medical facilities as governments around the world make plans to ease COVID-19 public health restrictions and attempt to safely reopen economies. Expanding COVID-19 testing to include environmental surfaces would ideally be performed with inexpensive swabs that could be transported safely without concern of being a source of new infections. However, CDC-approved clinical-grade sampling supplies and techniques using a synthetic swab are expensive, potentially expose laboratory workers to viable virus and prohibit analysis of the microbiome due to the presence of antibiotics in viral transport media (VTM). To this end, we performed a series of experiments comparing the diagnostic yield using five consumer-grade swabs (including plastic and wood shafts and various head materials including cotton, synthetic, and foam) and one clinical-grade swab for inhibition to RNA. For three of these swabs, we evaluated performance to detect SARS-CoV-2 in twenty intensive care unit (ICU) hospital rooms of patients including COVID-19+ patients. All swabs were placed in 95% ethanol and further evaluated in terms of RNase activity. SARS-CoV-2 was measured both directly from the swab and from the swab eluent.

Results

Compared to samples collected in VTM, 95% ethanol demonstrated significant inhibition properties against RNases. When extracting directly from the swab head as opposed to the eluent, RNA recovery was approximately 2-4× higher from all six swab types tested as compared to the clinical standard of testing the eluent from a CDC-approved synthetic (SYN) swab. The limit of detection (LoD) of SARS-CoV-2 from floor samples collected using the consumer-grade plastic (CGp) or research-grade plastic The Microsetta Initiative (TMI) swabs was similar or better than the SYN swab, further suggesting that swab type does not impact RNA recovery as measured by the abundance of SARS-CoV-2. The LoD for TMI was between 0 and 362.5 viral particles, while SYN and CGp were both between 725 and 1450 particles. Lastly microbiome analyses (16S rRNA gene sequencing) of paired samples (nasal and floor from same patient room) collected using different swab types in triplicate indicated that microbial communities were not impacted by swab type, but instead driven by the patient and sample type.

Conclusions

Compared to using a clinical-grade synthetic swab, detection of SARS-CoV-2 from environmental samples collected from ICU rooms of patients with COVID was similar using consumer-grade swabs, stored in 95% ethanol. The yield was best from the swab head rather than the eluent and the low level of RNase activity and lack of antibiotics in these samples makes it possible to perform concomitant microbiome analyses. Video abstract.

Cover page of Coordinating and Assisting Research at the SARS-CoV-2/Microbiome Nexus.

Coordinating and Assisting Research at the SARS-CoV-2/Microbiome Nexus.

(2020)

Although the COVID-19 pandemic is caused by a single virus, the rest of the human microbiome appears to be involved in the disease and could influence vaccine responses while offering opportunities for microbiome-directed therapeutics. The newly formed Microbiome Centers Consortium (MCC) surveyed its membership and identified four ways to leverage the strengths and experience of microbiome centers in the response to the COVID-19 pandemic. To meet these needs, the MCC will provide a platform to coordinate clinical and environmental research, assist with practical obstacles, and help communicate the connections between the microbiome and COVID-19. We ask that microbiome researchers join us in these efforts to address the ongoing pandemic.

Cover page of Verrucosamide, a Cytotoxic 1,4-Thiazepane-Containing Thiodepsipeptide from a Marine-Derived Actinomycete.

Verrucosamide, a Cytotoxic 1,4-Thiazepane-Containing Thiodepsipeptide from a Marine-Derived Actinomycete.

(2020)

A new cytotoxic thiodepsipeptide, verrucosamide (1), was isolated along with the known, related cyclic peptide thiocoraline, from the extract of a marine-derived actinomycete, a Verrucosispora sp., our strain CNX-026. The new peptide, which is composed of two rare seven-membered 1,4-thiazepane rings, was elucidated by a combination of spectral methods and the absolute configuration was determined by a single X-ray diffraction study. Verrucosamide (1) showed moderate cytotoxicity and selectivity in the NCI 60 cell line bioassay. The most susceptible cell lines were MDA-MB-468 breast carcinoma with an LD50 of 1.26 µM, and COLO 205 colon adenocarcinoma with an LD50 of 1.4 µM. Also isolated along with verrucosamide were three small 3-hydroxy(alkoxy)-quinaldic acid derivatives that appear to be products of the same biosynthetic pathway.

Cover page of Handwashing and Detergent Treatment Greatly Reduce SARS-CoV-2 Viral Load on Halloween Candy Handled by COVID-19 Patients.

Handwashing and Detergent Treatment Greatly Reduce SARS-CoV-2 Viral Load on Halloween Candy Handled by COVID-19 Patients.

(2020)

Due to the COVID-19 pandemic and potential public health implications, we are publishing this peer-reviewed manuscript in its accepted form. The final, copyedited version of the paper will be available at a later date. Although SARS-CoV-2 is primarily transmitted by respiratory droplets and aerosols, transmission by fomites remains plausible. During Halloween, a major event for children in numerous countries, SARS-CoV-2 transmission risk via candy fomites worries many parents. To address this concern, we enrolled 10 recently diagnosed asymptomatic or mildly/moderately symptomatic COVID-19 patients to handle typical Halloween candy (pieces individually wrapped) under three conditions: normal handling with unwashed hands, deliberate coughing and extensive touching, and normal handling following handwashing. We then used a factorial design to subject the candies to two post-handling treatments: no washing (untreated) and household dishwashing detergent. We measured SARS-CoV-2 load by RT-qPCR and LAMP. From the candies not washed post-handling, we detected SARS-CoV-2 on 60% of candies that were deliberately coughed on, 60% of candies normally handled with unwashed hands, but only 10% of candies handled after hand washing. We found that treating candy with dishwashing detergent reduced SARS-CoV-2 load by 62.1% in comparison to untreated candy. Taken together, these results suggest that although the risk of transmission of SARS-CoV-2 by fomites is low even from known COVID-19 patients, viral RNA load can be reduced to near zero by the combination of handwashing by the infected patient and ≥1 minute detergent treatment after collection. We also found that the inexpensive and fast LAMP protocol was more than 80% concordant with RT-qPCR.IMPORTANCE The COVID-19 pandemic is leading to important tradeoffs between risk of SARS-CoV-2 transmission and mental health due to deprivation from normal activities, with these impacts being especially profound in children. Due to the ongoing pandemic, Halloween activities will be curtailed as a result of the concern that candy from strangers might act as fomites. Here we demonstrate that these risks can be mitigated by ensuring that prior to handling candy, the candy giver washes their hands, and by washing collected candy with household dishwashing detergent. Even in the most extreme case, with candy deliberately coughed on by known COVID-19 patients, viral load was reduced dramatically after washing with household detergent. We conclude that with reasonable precautions, even if followed only by either the candy giver or the candy recipient, the risk of viral transmission by this route is very low.

Cover page of Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems.

Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems.

(2020)

Mangrove ecosystems provide important ecological benefits and ecosystem services, including carbon storage and coastline stabilization, but they also suffer great anthropogenic pressures. Microorganisms associated with mangrove sediments and the rhizosphere play key roles in this ecosystem and make essential contributions to its productivity and carbon budget. Understanding this nexus and moving from descriptive studies of microbial taxonomy to hypothesis-driven field and lab studies will facilitate a mechanistic understanding of mangrove ecosystem interaction webs and open opportunities for microorganism-mediated approaches to mangrove protection and rehabilitation. Such an effort calls for a multidisciplinary and collaborative approach, involving chemists, ecologists, evolutionary biologists, microbiologists, oceanographers, plant scientists, conservation biologists, and stakeholders, and it requires standardized methods to support reproducible experiments. Here, we outline the Mangrove Microbiome Initiative, which is focused around three urgent priorities and three approaches for advancing mangrove microbiome research.

Cover page of Distinctive gene and protein characteristics of extremely piezophilic Colwellia.

Distinctive gene and protein characteristics of extremely piezophilic Colwellia.

(2020)

Background

The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea.

Results

Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems.

Conclusions

We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.