Skip to main content
eScholarship
Open Access Publications from the University of California

To meet the challenges of marine conservation, the Center for Marine Biodiversity and Conservation (CMBC) was established at the Scripps Institution of Oceanography (SIO) in May 2001. Its goals are:

  • Investigation: Assess the state of marine ecosystems now and in the past and develop predictive models for the future
  • Education: Train new marine biodiversity and conservation scientists in the United States and around the world
  • Integration: Develop novel interdisciplinary approaches linking the biological, physical, social and informatic sciences
  • Communication: Increase public understanding of scientific issues and provide sound scientific analyses to policy makers
  • Application: Design technically sophisticated, regionally appropriate strategies to prevent and reverse biodiversity collapse

Dr. Lisa Levin, Director
http://cmbc.ucsd.edu
cmbc@ucsd.edu

Deoxyvasicinone with Anti-Melanogenic Activity from Marine-Derived Streptomyces sp. CNQ-617.

(2022)

The tricyclic quinazoline alkaloid deoxyvasicinone (DOV, 1) was isolated from a marine-derived Streptomyces sp. CNQ-617, and its anti-melanogenic effects were investigated. Deoxyvasicinone was shown to decrease the melanin content of B16F10 and MNT-1 cells that have been stimulated by α-melanocyte-stimulating hormone (α-MSH). In addition, microscopic images of the cells showed that deoxyvasicinone attenuated melanocyte activation. Although, deoxyvasicinone did not directly inhibit tyrosinase (TYR) enzymatic activity, real-time PCR showed that it inhibited the mRNA expression of TYR, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). In the artificial 3D pigmented skin model MelanodermTM, deoxyvasicinone brightened the skin significantly, as confirmed by histological examination. In conclusion, this study demonstrated that the marine microbial natural product deoxyvascinone has an anti-melanogenic effect through downregulation of melanogenic enzymes.

Conceptual strategies for characterizing interactions in microbial communities.

(2022)

Understanding the sets of inter- and intraspecies interactions in microbial communities is a fundamental goal of microbial ecology. However, the study and quantification of microbial interactions pose several challenges owing to their complexity, dynamic nature, and the sheer number of unique interactions within a typical community. To overcome such challenges, microbial ecologists must rely on various approaches to distill the system of study to a functional and conceptualizable level, allowing for a practical understanding of microbial interactions in both simplified and complex systems. This review broadly addresses the role of several conceptual approaches available for the microbial ecologist's arsenal, examines specific tools used to accomplish such approaches, and describes how the assumptions, expectations, and philosophies underlying these tools change across scales of complexity.

Marine Depsipeptide Nobilamide I Inhibits Cancer Cell Motility and Tumorigenicity via Suppressing Epithelial-Mesenchymal Transition and MMP2/9 Expression.

(2022)

A cyclic depsipeptide, nobilamide I (1), along with the known peptide A-3302-B/TL-119 (2), was isolated from the saline cultivation of the marine-derived bacterium Saccharomonospora sp., strain CNQ-490. The planar structure of 1 was elucidated by interpretation of 1D and 2D NMR and MS spectroscopic data. The absolute configurations of the amino acids in 1 were assigned by using the C3 Marfey's analysis and comparing them with those of 2 based on their biosynthetic pathways. Nobilamide I (1) decreased cell motility by inhibiting epithelial-mesenchymal transition markers in A549 (lung cancer), AGS (gastric cancer), and Caco2 (colorectal cancer) cell lines. In addition, 1 modulated the expression of the matrix metalloproteinase (MMP) family (MMP2 and MMP9) in the three cell lines.

Dietary Selection Pressures and Their Impact on the Gut Microbiome.

(2022)

The human gut microbiota harbors a heterogeneous and dynamic community of microorganisms that coexist with the host to exert a marked influence on human physiology and health. Throughout the lifespan, diet can shape the composition and diversity of the members of the gut microbiota by determining the microorganisms that will colonize, persist, or become extinct. This is no more pronounced than during early-life succession of the gut microbiome when food type and source changes relatively often and food preferences are established, which is largely determined by geographic location and the customs and cultural practices of that environment. These dietary selection pressures continue throughout life, as society has become increasingly mobile and as we consume new foods to which we have had no previous exposure. Dietary selection pressures also come in the form of overall reduction or excess such as with the growing problems of food insecurity (lack of food) as well as of dietary obesity (overconsumption). These are well-documented forms of dietary selection pressures that have profound impact on the gut microbiota that ultimately may contribute to or worsen disease. However, diets and dietary components can also be used to promote healthy microbial functions in the gut, which will require tailored approaches taking into account an individual's personal history and doing away with one-size-fits-all nutrition. Herein, we summarize current knowledge on major dietary selection pressures that influence gut microbiota structure and function across and within populations, and discuss both the potential of personalized dietary solutions to health and disease and the challenges of implementation.

Saccharobisindole, Neoasterric Methyl Ester, and 7-Chloro-4(1H)-quinolone: Three New Compounds Isolated from the Marine Bacterium Saccharomonospora sp.

(2021)

Analysis of the chemical components from the culture broth of the marine bacterium Saccharomonospora sp. CNQ-490 has yielded three novel compounds: saccharobisindole (1), neoasterric methyl ester (2), and 7-chloro-4(1H)-quinolone (3), in addition to acremonidine E (4), pinselin (5), penicitrinon A (6), and penicitrinon E (7). The chemical structures of the three novel compounds were elucidated by the interpretation of 1D, 2D nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS) data. Compound 2 generated weak inhibition activity against Bacillus subtilis KCTC2441 and Staphylococcus aureus KCTC1927 at concentrations of 32 μg/mL and 64 μg/mL, respectively, whereas compounds 1 and 3 did not have any observable effects. In addition, compound 2 displayed weak anti-quorum sensing (QS) effects against S. aureus KCTC1927 and Micrococcus luteus SCO560.

Seriniquinones as Therapeutic Leads for Treatment of BRAF and NRAS Mutant Melanomas.

(2021)

Isolated from the marine bacteria Serinicoccus sp., seriniquinone (SQ1) has been characterized by its selective activity in melanoma cell lines marked by its modulation of human dermcidin and induction of autophagy and apoptosis. While an active lead, the lack of solubility of SQ1 in both organic and aqueous media has complicated its preclinical evaluation. In response, our team turned its effort to explore analogues with the goal of returning synthetically accessible materials with comparable selectivity and activity. The analogue SQ2 showed improved solubility and reached a 30-40-fold greater selectivity for melanoma cells. Here, we report a detailed comparison of the activity of SQ1 and SQ2 in SK-MEL-28 and SK-MEL-147 cell lines, carrying the top melanoma-associated mutations, BRAFV600E and NRASQ61R, respectively. These studies provide a definitive report on the activity, viability, clonogenicity, dermcidin expression, autophagy, and apoptosis induction following exposure to SQ1 or SQ2. Overall, these studies showed that SQ1 and SQ2 demonstrated comparable activity and modulation of dermcidin expression. These studies are further supported through the evaluation of a panel of basal expression of key-genes related to autophagy and apoptosis, providing further insight into the role of these mutations. To explore this rather as a survival or death mechanism, autophagy inhibition sensibilized BRAF mutants to SQ1 and SQ2, whereas the opposite happened to NRAS mutants. These data suggest that the seriniquinones remain active, independently of the melanoma mutation, and suggest the future combination of their application with inhibitors of autophagy to treat BRAF-mutated tumors.

Antibacterial Meroterpenoids, Merochlorins G-J from the Marine Bacterium Streptomyces sp.

(2021)

Four new chlorinated meroterpenoids, merochlorins G-J (1-4), and 10, a dihydronaphthalenedione precursor, along with known merochlorins A (5) and C-F (6-9), were obtained from cultivation of the bacterium strain Streptomyces sp. CNH-189, which was isolated from marine sediment. The planar structures of compounds 1-4 and 10 were elucidated by interpretation of MS, UV, and NMR spectroscopic data. The relative configurations of compounds 1-4 were determined via analysis of nuclear Overhauser effect (NOE) spectroscopic data, after which their absolute configurations were established by comparing the experimental electronic circular dichroism (ECD) spectra of compounds 1-4 to those of previously reported possible enantiomer models and DP4 calculations. Compound 3 displayed strong antibacterial activities against Bacillus subtilis, Kocuria rhizophila, and Staphylococcus aureus, with MIC values of 1, 2, and 2 μg/mL, respectively, whereas compound 1 exhibited weak antibacterial effects on these three strains, with a 16-32 μg/mL MIC value range.

Cover page of Continental-Scale Paddy Soil Bacterial Community Structure, Function, and Biotic Interaction.

Continental-Scale Paddy Soil Bacterial Community Structure, Function, and Biotic Interaction.

(2021)

Rice paddy soil-associated microbiota participate in biogeochemical processes that underpin rice yield and soil sustainability, yet continental-scale biogeographic patterns of paddy soil microbiota remain elusive. The soil bacteria of four typical Chinese rice-growing regions were characterized and compared to those of nonpaddy soils. The paddy soil bacteria were significantly less diverse, with unique taxonomic and functional composition, and harbored distinct cooccurrence network topology. Both stochastic and deterministic processes shaped soil bacteria assembly, but paddy samples exhibited a stronger deterministic signature than nonpaddy samples. Compared to other environmental factors, climatic factors such as mean monthly precipitation and mean annual temperature described most of the variance in soil bacterial community structure. Cooccurrence network analysis suggests that the continental biogeographic variance in bacterial community structure was described by the competition between two mutually exclusive bacterial modules in the community. Keystone taxa identified in network models (Anaerolineales, Ignavibacteriae, and Deltaproteobacteria) were more sensitive to changes in environmental factors, leading us to conclude that environmental factors may influence paddy soil bacterial communities via these keystone taxa. Characterizing the uniqueness of bacterial community patterns in paddy soil (compared to nonpaddy soils) at continental scales is central to improving crop productivity and resilience and to sustaining agricultural soils. IMPORTANCE Rice fields provide food for over half of the world's human population. The ecology of paddy soil microbiomes is shaped by human activities, which can have a profound impact on rice yield, greenhouse gas emissions, and soil health. Investigations of the soil bacteria in four typical Chinese rice-growing regions showed that (i) soil bacterial communities maintain highly modularized species-to-species network structures; (ii) community patterns were shaped by the balance of integrated stochastic and deterministic processes, in which homogenizing selection and dispersal limitation dominate; and (iii) deterministic processes and climatic and edaphic factors influence community patterns mainly by their impact on highly connected nodes (i.e., keystone taxa) in networks. Characterizing the unique ecology of bacterial community patterns in paddy soil at a continental scale may lead to improved crop productivity and resilience, as well as sustaining agricultural soils.

Cover page of Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem.

Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem.

(2021)

DNA metabarcoding is an important tool for molecular ecology. However, its effectiveness hinges on the quality of reference sequence databases and classification parameters employed. Here we evaluate the performance of MiFish 12S taxonomic assignments using a case study of California Current Large Marine Ecosystem fishes to determine best practices for metabarcoding. Specifically, we use a taxonomy cross-validation by identity framework to compare classification performance between a global database comprised of all available sequences and a curated database that only includes sequences of fishes from the California Current Large Marine Ecosystem. We demonstrate that the regional database provides higher assignment accuracy than the comprehensive global database. We also document a tradeoff between accuracy and misclassification across a range of taxonomic cutoff scores, highlighting the importance of parameter selection for taxonomic classification. Furthermore, we compared assignment accuracy with and without the inclusion of additionally generated reference sequences. To this end, we sequenced tissue from 597 species using the MiFish 12S primers, adding 252 species to GenBank's existing 550 California Current Large Marine Ecosystem fish sequences. We then compared species and reads identified from seawater environmental DNA samples using global databases with and without our generated references, and the regional database. The addition of new references allowed for the identification of 16 additional native taxa representing 17.0% of total reads from eDNA samples, including species with vast ecological and economic value. Together these results demonstrate the importance of comprehensive and curated reference databases for effective metabarcoding and the need for locus-specific validation efforts.

Cover page of An Independent Scientific An Independent Scientific Assessment of Assessment of Well Stimulation in California Volume II Potential Environmental Impacts of Hydraulic Fracturing and Acid Stimulations

An Independent Scientific An Independent Scientific Assessment of Assessment of Well Stimulation in California Volume II Potential Environmental Impacts of Hydraulic Fracturing and Acid Stimulations

(2021)

In 2013, the California Legislature passed Senate Bill 4 (SB 4), setting the framework for regulation of well stimulation technologies in California, including hydraulic fracturing. SB 4 also requires the California Natural Resources Agency to conduct an independent scientific study of well stimulation technologies in California. SB 4 stipulates that the independent study assess current and potential future well stimulation practices, including the likelihood that these technologies could enable extensive new petroleum production in the state; evaluate the impacts of well stimulation technologies and the gaps in data that preclude this understanding; identify potential risks associated with current practices; and identify alternative practices that might limit these risks. (See Box 1.1-1 for a short history of oil and gas production in California.) This scientific assessment addresses well stimulation used in oil and gas production both on land and offshore in California. This study is issued in three volumes. Volume I, issued in January 2015, describes how well stimulation technologies work, how and where operators deploy these technologies for oil and gas production in California, and where they might enable production in the future. Volume II, the present volume, discusses how well stimulation could affect water, atmosphere, seismic activity, wildlife and vegetation, and human health. Volume II reviews available data, and identifies knowledge gaps and alternative practices that could avoid or mitigate these possible impacts. Volume III, also issued in July 2015, presents case studies that assess environmental issues and qualitative risks for specific geographic regions. A final Summary Report summarizes key findings, conclusions and recommendations of all three volumes. Well stimulation enhances oil and gas production by making the reservoir rocks more permeable, thus allowing more oil or gas to flow to the well. The reports discuss three types of well stimulation as defined in SB 4 (Table 1.1-1 and Volume I, Chapter 2). The first type is “hydraulic fracturing.” To create a hydraulic fracture, an operator increases the pressure of an injected fluid in an isolated section of a well until the surrounding rock breaks, or “fractures.” Sand injected into these fractures props them open after the pressure is released. The second type is “acid fracturing,” in which a high-pressure acidic fluid fractures the rock and etches the walls of the fractures, so they remain permeable after the pressure is released. The third type, “matrix acidizing,” does not fracture the rock; instead, acid pumped into the well at relatively low pressure dissolves some of the rock and makes it more permeable.