Skip to main content
eScholarship
Open Access Publications from the University of California

Open Access Policy Deposits

This series is automatically populated with publications deposited by UC San Diego Scripps Institution of Oceanography Integrative Oceanography Division researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Effects of Mesoscale Eddies on Southern Ocean Biogeochemistry

(2024)

The Southern Ocean is rich in highly dynamic mesoscale eddies and substantially modulates global biogeochemical cycles. However, the overall surface and subsurface effects of eddies on the Southern Ocean biogeochemistry have not been quantified observationally at a large scale. Here, we co-locate eddies, identified in the Meta3.2DT satellite altimeter-based product, with biogeochemical Argo floats to determine the effects of eddies on the dissolved inorganic carbon (DIC), nitrate, and dissolved oxygen concentrations in the upper 1,500 m of the ice-free Southern Ocean, as well as the eddy effects on the carbon fluxes in this region. DIC and nitrate concentrations are lower in anticyclonic eddies (AEs) and increased in cyclonic eddies (CEs), while dissolved oxygen anomalies switch signs above (CEs: positive, AEs: negative) and below the mixed layer (CEs: negative, AEs: positive). We attribute these anomalies primarily to eddy pumping (isopycnal heave), as well as eddy trapping for oxygen. Maximum anomalies in all tracers occur at greater depths in the subduction zone north of the Antarctic Circumpolar Current (ACC) compared to the upwelling region in the ACC, reflecting differences in background vertical structures. Eddy effects on air-sea CO2 exchange have significant seasonal variability, with additional outgassing in CEs in fall (physical process) and additional oceanic uptake in AEs and CEs in spring (biological and physical process). Integrated over the Southern Ocean, AEs contribute ∼0.03± 0.01 Pg C yr-1 (7 ±2% ) to the Southern Ocean carbon uptake, and CEs offset this by ∼0.01± 0.01 Pg C yr-1 (2 ±2% ). These findings underscore the importance of considering eddy impacts in observing networks and climate models.

Cover page of The persistent DDT footprint of ocean disposal, and ecological controls on bioaccumulation in fishes.

The persistent DDT footprint of ocean disposal, and ecological controls on bioaccumulation in fishes.

(2024)

Globally, ocean dumping of chemical waste is a common method of disposal and relies on the assumption that dilution, diffusion, and dispersion at ocean scales will mitigate human exposure and ecosystem impacts. In southern California, extensive dumping of agrochemical waste, particularly chlorinated hydrocarbon contaminants such as DDT, via sewage outfalls and permitted offshore barging occurred for most of the last century. This study compiled a database of existing sediment and fish DDT measurements to examine how this unique legacy of regional ocean disposal translates into the contemporary contamination of the coastal ocean. We used spatiotemporal modeling to derive continuous estimates of sediment DDT contamination and show that the spatial signature of disposal (i.e., high loadings near historic dumping sites) is highly conserved in sediments. Moreover, we demonstrate that the proximity of fish to areas of high sediment loadings explained over half of the variation in fish DDT concentrations. The relationship between sediment and fish contamination was mediated by ecological predictors (e.g., species, trophic ecology, habitat use), and the relative influence of each predictor was context-dependent, with habitat exhibiting greater importance in heavily contaminated areas. Thus, despite more than half a century since the cessation of industrial dumping in the region, local ecosystem contamination continues to mirror the spatial legacy of dumping, suggesting that sediment can serve as a robust predictor of fish contamination, and general ecological characteristics offer a predictive framework for unmeasured species or locations.

Cover page of Ecosystem service values support conservation and sustainable land development: Perspectives from four University of California campuses

Ecosystem service values support conservation and sustainable land development: Perspectives from four University of California campuses

(2024)

Urban landscapes homogenize our world at global scales, contributing to “extinction of experience”, a progressive decline in human interactions with native greenspace that can disconnect people from the services it provides. College age adults report feeling disconnected from nature more than other demographics, making universities a logical place to explore interventions intended to restore a connection with nature. This study surveyed 1088 students and staff across four university campus communities in Southern California, USA and used multicriteria decision analysis to explore their landscape preferences and the implications of those preferences for combatting extinction of experience. Our results suggest that perspectives of, and preferences for, different greenspace forms vary significantly (i.e., they are not perceived as substitutable). Support for native ecosystems, particularly coastal sage scrub (top ranked landscape) was generally high, suggesting that disaffection with wild nature is not particularly widespread. Programs for replacing turf grass lawns (lowest ranked landscape) with native plants were also well supported, but support for stormwater bioswales was more moderate (and variable). This may reflect their relative newness, both on university campuses and in urban spaces more generally. Not all members of campus communities preferred the same landscapes; preferences differed with degree of pro-environmentalism and university status (undergraduate student, graduate student, staff). Even so, all respondents exhibited landscape preferences consistent with at least one approach for combatting extinction of experience, suggesting that ecologists, engineers and urban planners have a viable set of generalizable tools for reconnecting people with nature.

Cover page of Deepening the Decade: Collaborative Action for Advancing Deep‐Ocean Science and Policy in the United Nations Decade of Ocean Science for Sustainable Development

Deepening the Decade: Collaborative Action for Advancing Deep‐Ocean Science and Policy in the United Nations Decade of Ocean Science for Sustainable Development

(2024)

Abstract: The current United Nations Decade of Ocean Science for Sustainable Development (2021–2030; hereafter, the Decade) offers a unique opportunity and framework to globally advance ocean science and policy. Achieving meaningful progress within the Decade requires collaboration and coordination across Decade Actions (Programs, Projects, and Centres). This coordination is particularly important for the deep ocean, which remains critically under‐sampled compared to other ecosystems. Despite the limited sampling, the deep ocean accounts for over 95% of Earth's habitable space, plays a crucial role in regulating the carbon cycle and global temperatures, and supports diverse ecosystems. To collectively advance deep‐ocean science, we gathered representatives from 20 Decade Actions that focus at least partially on the deep ocean. We identified five broad themes that aim to advance deep‐ocean science in alignment with the Decade's overarching 10 Challenges: natural capital and the blue economy, biodiversity, deep‐ocean observing, best practices in data sharing, and capacity building. Within each theme, we propose concrete objectives (termed Cohesive Asks) and milestones (Targets) for the deep‐ocean community. Developing these Cohesive Asks and Targets reflects a commitment to better coordination across deep‐ocean Decade Actions. We aim to build bridges across deep‐ocean disciplines, which encompass natural science, ocean observing, policy, and capacity development.

Cover page of Molecular forecasting of domoic acid during a pervasive toxic diatom bloom

Molecular forecasting of domoic acid during a pervasive toxic diatom bloom

(2024)

In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis, this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis (dab) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters (sit1) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that coexpression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have colimited the diatom population along with low Si. Iron limitation represents an overlooked driver of both toxin production and ecological success of the low-iron-adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms.

Cover page of Metatranscriptomic response of deep ocean microbial populations to infusions of oil and/or synthetic chemical dispersant.

Metatranscriptomic response of deep ocean microbial populations to infusions of oil and/or synthetic chemical dispersant.

(2024)

Oil spills are a frequent perturbation to the marine environment that has rapid and significant impacts on the local microbiome. Previous studies have shown that exposure to synthetic dispersant alone did not enhance heterotrophic microbial activity or oxidation rates of specific hydrocarbon components but increased the abundance of some taxa (e.g., Colwellia). In contrast, exposure to oil, but not dispersants, increased the abundance of other taxa (e.g., Marinobacter) and stimulated hydrocarbon oxidation rates. Here, we advance these findings by interpreting metatranscriptomic data from this experiment to explore how and why specific components of the microbial community responded to distinct organic carbon exposure regimes. Dispersant alone was selected for a unique community and for dominant organisms that reflected treatment- and time-dependent responses. Dispersant amendment also led to diverging functional profiles among the different treatments. Similarly, oil alone was selected for a community that was distinct from treatments amended with dispersants. The presence of oil and dispersants with added nutrients led to substantial differences in microbial responses, likely suggesting increased fitness driven by the presence of additional inorganic nutrients. The oil-only additions led to a marked increase in the expression of phages, prophages, transposable elements, and plasmids (PPTEPs), suggesting that aspects of microbial community response to oil are driven by the mobilome, potentially through viral-associated regulation of metabolic pathways in ciliates and flagellates that would otherwise throttle the microbial community through grazing.IMPORTANCEMicrocosm experiments simulated the April 2010 Deepwater Horizon oil spill by applying oil and synthetic dispersants (Corexit EC9500A and EC9527A) to deep ocean water samples. The exposure regime revealed severe negative alterations in the treatments heterotrophic microbial activity and hydrocarbon oxidation rates. We expanded these findings by exploring metatranscriptomic signatures of the microbial communities during the chemical amendments in the microcosm experiments. Here we report how dominant organisms were uniquely associated with treatment- and time-dependent trajectories during the exposure regimes; nutrient availability was a significant factor in driving changes in metatranscriptomic responses. Remarkable signals associated with PPTEPs showed the potential role of mobilome and viral-associated survival responses. These insights underscore the time-dependent environmental perturbations of fragile marine environments under oil and anthropogenic stress.

Cover page of Changes in microbial community structure of bio-fouled polyolefins over a year-long seawater incubation in Hawaii.

Changes in microbial community structure of bio-fouled polyolefins over a year-long seawater incubation in Hawaii.

(2024)

Plastic waste, especially positively buoyant polymers known as polyolefins, are a major component of floating debris in the marine environment. While plastic colonisation by marine microbes is well documented from environmental samples, the succession of marine microbial community structure over longer time scales (> > 1 month) and across different types and shapes of plastic debris is less certain. We analysed 16S rRNA and 18S rRNA amplicon gene sequences from biofilms on polyolefin debris floating in a flow-through seawater tank in Hawaii to assess differences in microbial succession across the plastic types of polypropylene (PP) and both high-density polyethylene (HDPE) and low-density polyethylene (LDPE) made of different plastic shapes (rod, film and cube) under the same environmental conditions for 1 year. Regardless of type or shape, all plastic debris were dominated by the eukaryotic diatom Nitzschia, and only plastic type was significantly important for bacterial community structure over time (p = 0.005). PE plastics had higher differential abundance when compared to PP for 20 bacterial and eight eukaryotic taxa, including the known plastic degrading bacterial taxon Hyphomonas (p = 0.01). Results from our study provide empirical evidence that plastic type may be more important for bacterial than eukaryotic microbial community succession on polyolefin pollution under similar conditions.