Skip to main content
eScholarship
Open Access Publications from the University of California

School of Medicine

Department of OB/GYN & Reproductive Sciences - Open Access Policy Deposits bannerUC San Diego

This series is automatically populated with publications deposited by UC San Diego School of Medicine Department of OB/GYN & Reproductive Sciences researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Advancing stem cell technologies for conservation of wildlife biodiversity.

Advancing stem cell technologies for conservation of wildlife biodiversity.

(2024)

Wildlife biodiversity is essential for healthy, resilient and sustainable ecosystems. For biologists, this diversity also represents a treasure trove of genetic, molecular and developmental mechanisms that deepen our understanding of the origins and rules of life. However, the rapid decline in biodiversity reported recently foreshadows a potentially catastrophic collapse of many important ecosystems and the associated irreversible loss of many forms of life on our planet. Immediate action by conservationists of all stripes is required to avert this disaster. In this Spotlight, we draw together insights and proposals discussed at a recent workshop hosted by Revive & Restore, which gathered experts to discuss how stem cell technologies can support traditional conservation techniques and help protect animal biodiversity. We discuss reprogramming, in vitro gametogenesis, disease modelling and embryo modelling, and we highlight the prospects for leveraging stem cell technologies beyond mammalian species.

Cover page of Comparative single-cell transcriptional and proteomic atlas of clinical-grade injectable mesenchymal source tissues

Comparative single-cell transcriptional and proteomic atlas of clinical-grade injectable mesenchymal source tissues

(2024)

Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.

Cover page of PI3Kγ inhibition circumvents inflammation and vascular leak in SARS-CoV-2 and other infections

PI3Kγ inhibition circumvents inflammation and vascular leak in SARS-CoV-2 and other infections

(2024)

Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant Staphylococcus aureus (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm. These results demonstrate essential roles for PI3Kγ in inflammatory lung disease and support the potential use of PI3Kγ inhibitors to suppress inflammation in severe infectious diseases.

Cover page of Integrating clinical research into electronic health record workflows to support a learning health system.

Integrating clinical research into electronic health record workflows to support a learning health system.

(2024)

OBJECTIVE: Integrating clinical research into routine clinical care workflows within electronic health record systems (EHRs) can be challenging, expensive, and labor-intensive. This case study presents a large-scale clinical research project conducted entirely within a commercial EHR during the COVID-19 pandemic. CASE REPORT: The UCSD and UCSDH COVID-19 NeutraliZing Antibody Project (ZAP) aimed to evaluate antibody levels to SARS-CoV-2 virus in a large population at an academic medical center and examine the association between antibody levels and subsequent infection diagnosis. RESULTS: The project rapidly and successfully enrolled and consented over 2000 participants, integrating the research trial with standing COVID-19 testing operations, staff, lab, and mobile applications. EHR-integration increased enrollment, ease of scheduling, survey distribution, and return of research results at a low cost by utilizing existing resources. CONCLUSION: The case study highlights the potential benefits of EHR-integrated clinical research, expanding their reach across multiple health systems and facilitating rapid learning during a global health crisis.

Cover page of The EV antibody database: An interactive database of curated antibodies for extracellular vesicle and nanoparticle research.

The EV antibody database: An interactive database of curated antibodies for extracellular vesicle and nanoparticle research.

(2024)

Antibodies are critical tools for research into extracellular vesicles (EVs) and other extracellular nanoparticles (ENPs), where they can be used for their identification, characterization, and isolation. However, the lack of a centralized antibody platform where researchers can share validation results thus minimizing wasted personnel time and reagents, has been a significant obstacle. Moreover, because the performance of antibodies varies among assay types and conditions, detailed information on assay variables and protocols is also of value. To facilitate sharing of results on antibodies that are relevant to EV/ENP research, the EV Antibody Database has been developed by the investigators of the Extracellular RNA Communication Consortium (ERCC). Hosted by the ExRNA Portal (https://exrna.org/resources/evabdb/), this interactive database aggregates and shares results from antibodies that have been tested by research groups in the EV/ENP field. Currently, the EV Antibody Database includes modules for antibodies tested for western Blot, EV Flow Cytometry, and EV Sandwich Assays, and holds 110 records contributed by 6 laboratories from the ERCC. Detailed information on antibody sources, assay conditions, and results is provided, including negative results. We encourage ongoing expert input and community feedback to enhance the databases utility, making it a valuable resource for comprehensive validation data on antibodies and protocols in EV biology.

Defining the relationship of salivary gland malignancies to novel cell subpopulations in human salivary glands using single nucleus RNA‐sequencing

(2024)

Salivary glands have essential roles in maintaining oral health, mastication, taste and speech, by secreting saliva. Salivary glands are composed of several types of cells, and each cell type is predicted to be involved in the carcinogenesis of different types of cancers including adenoid cystic carcinoma (ACC), acinic cell carcinoma (AciCC), salivary duct carcinoma (SDC), myoepithelial carcinoma (MECA) and other histology. In our study, we performed single nucleus RNA-seq on three human salivary gland samples to clarify the gene expression profile of each complex cellular component of the salivary glands and related these expression patterns to expression found in salivary gland cancers (SGC) to infer cell of origin. By single nucleus RNA-seq, salivary gland cells were stratified into four clusters: acinar cells, ductal cells 1, ductal cells 2 and myoepithelial cells/stromal cells. The localization of each cell group was verified by IHC of each cluster marker gene, and one group of ductal cells was found to represent intercalated ductal cells labeled with HES1. Furthermore, in comparison with SGC RNA-seq data, acinar cell markers were upregulated in AciCC, but downregulated in ACC and ductal cell markers were upregulated in SDC but downregulated in MECA, suggesting that markers of origin are highly expressed in some SGC. Cell type expressions in specific SGC histology are similar to those found in normal salivary gland populations, indicating a potential etiologic relationship.

Cover page of Nuclear morphology is shaped by loop-extrusion programs

Nuclear morphology is shaped by loop-extrusion programs

(2024)

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.

Cover page of An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition.

An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition.

(2024)

Without new transcription, gene expression across the oocyte-to-embryo transition (OET) relies instead on regulation of mRNA poly(A) tails to control translation. However, how tail dynamics shape translation across the OET in mammals remains unclear. We perform long-read RNA sequencing to uncover poly(A) tail lengths across the mouse OET and, incorporating published ribosome profiling data, provide an integrated, transcriptome-wide analysis of poly(A) tails and translation across the entire transition. We uncover an extended wave of global deadenylation during fertilization in which short-tailed, oocyte-deposited mRNAs are translationally activated without polyadenylation through resistance to deadenylation. Subsequently, in the embryo, mRNAs are readenylated and translated in a surge of global polyadenylation. We further identify regulation of poly(A) tail length at the isoform level and stage-specific enrichment of mRNA sequence motifs among regulated transcripts. These data provide insight into the stage-specific mechanisms of poly(A) tail regulation that orchestrate gene expression from oocyte to embryo in mammals.

Cover page of Malignant A-to-I RNA editing by ADAR1 drives T cell acute lymphoblastic leukemia relapse via attenuating dsRNA sensing

Malignant A-to-I RNA editing by ADAR1 drives T cell acute lymphoblastic leukemia relapse via attenuating dsRNA sensing

(2024)

Leukemia-initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches. Here, we show that the RNA-editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine editing is a common attribute of relapsed T cell acute lymphoblastic leukemia (T-ALL) regardless of molecular subtype. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL patient-derived xenograft models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA to avoid detection by the innate immune sensor melanoma differentiation-associated protein 5 (MDA5). Moreover, we uncover that the cell-intrinsic level of MDA5 dictates the dependency on the ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents an effective therapeutic strategy for eliminating T-ALL LICs.

Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis

(2024)

Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.