- Main
Impact of Pre-Plasma on Electron Generation and Transport in Laser Plasma Interactions
- Peebles, Jonathan Lee
- Advisor(s): Beg, Farhat N
Abstract
Relativistic laser plasma interactions in conjunction with an underdense pre-plasma have been shown to generate a two temperature component electron spectrum. The lower temperature component described by “ponderomotive scaling'” is relatively well known and understood and is useful for applications such as the fast ignition inertial confinement fusion scheme. The higher energy electrons generated due to pre-plasma are denoted as “super-ponderomotive” electrons and facilitate interesting and useful applications. These include but are not limited to table top particle acceleration and generating high energy protons, x-rays and neutrons from secondary interactions. This dissertation describes experimental and particle-in-cell computational studies of the electron spectra produced from interactions between short pulse high intensity lasers and controlled pre-plasma conditions.
Experiments were conducted at 3 laser labs: Texas Petawatt (University of Texas at Austin), Titan (Lawrence Livermore National Laboratory) and OMEGA-EP (University of Rochester). These lasers have different capabilities, and multiple experiments were carried out in order to fully understand super-ponderomotive electron generation and transport in the high intensity laser regime (I > 10^18 W/cm^2). In these experiments, an additional secondary long pulse beam was used to generate different scale lengths of “injected” pre-plasma while the pulse length and intensity of the short pulse beam were varied. The temperature and quantity of super-ponderomotive electrons were monitored with magnetic spectrometers and inferred via bremsstrahlung spectrometers while trajectory was estimated via Cu-Kα imaging.
The experimental and simulation data show that super-ponderomotive electrons require pulse lengths of at least 450 fs to be accelerated and that higher intensity interactions generate large magnetic fields which cause severe deflection of the super-ponderomotive electrons. Laser incidence angle is shown to be extremely important in determining hot electron trajectory. Longer pulse length data taken on OMEGA-EP and Titan showed that super-ponderomotive electrons could be created without the need for an initial pre-plasma due to the underdense plasma created during the high intensity interaction alone.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-