Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Knowledge, experience, generations, and limits in machine learning

Abstract

This paper extends traditional models of machine learning beyond their one-level structure by introducing previously obtained problem knowledge into the algorithm or automaton involved. Some authors studied more advanced than traditional models that utilize some kind of predetermined knowledge, having a two-level structure. However, even in this case, the model has not reflected the source and inherited properties of predetermined knowledge. In society, knowledge is often transmitted from previous generations. The aim of this paper is to construct and study algorithmic models of learning processes that utilize predetermined or prior knowledge. The models use recursive, subrecursive, and super-recursive algorithms. Predetermined knowledge includes: a text description, activity rules (e.g., for cognition), and specific structured personal or social memory. Algorithmic models represent these three forms as separate structured processing systems: automata with (1) advice; (2) structured program; and (3) structured memory. That yields three basic models for learning systems: polynomially bounded turing machines, Turing machines, and inductive Turing machines of the first order. (C) 2003 Elsevier B.V. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View