Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Increased expression of GABA transporters, GAT-1 and GAT-3, in the deafferented superior colliculus of the rat

Abstract

GABA transporters (GATs) play a critical role in the translemmal transport of GABA in neurons and glial cells. Two major brain GATs, GAT-1 and GAT-3, are found in astrocytes in the adult brain. Astroglia demonstrate morphological and molecular changes in response to brain injury and deafferentation. The present study was designed to determine whether the expression of GATs changes after nerve deafferentation using the rat superior colliculus (SC) as a model. The immunoreactivity for GAT-1 and GAT-3, as well as GABA and glutamic acid decarboxylase (GAD)-65 and GAD-67, was studied in the SC of control rats and rats with unilateral optic nerve transections. Immunolabeling for both GAT-1 and GAT-3 was increased in the neuropil of the denervated SC as compared to that for the SC of control rats or for the unaffected SC of experimental rats. In contrast, immunoreactivity for GABA, GAD-65 and GAD-67 was not altered. The change in the immunolabeling of GAT-1 and GAT-3 was detectable at 1 day postlesion and became more evident between 3-30 days postlesion. At the electron microscopic level, immunoreactivity for both GAT-1 and GAT-3 in the unaffected SC was localized to astrocytic processes, whereas GAT-1 immunolabeling was also present in synaptic terminals. In the deafferented SC, immunolabeling for both GATs was elevated in the somata and processes of hypertrophied astrocytes as compared to that in the unaffected SC, whereas GAT-1 labeling in neuronal profiles was largely unchanged. A substantial increase of GAT-1 and GAT-3 in astrocytes following optic nerve transection suggests that these cells play a role in modulating GABA's action in the deafferented SC.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View