Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Role of RAS/Wnt/β-catenin axis activation in the pathogenesis of podocyte injury and tubulo-interstitial nephropathy

Abstract

Renin-angiotensin system (RAS) plays a key role in the development and progression of chronic kidney disease (CKD). Recent studies have demonstrated activation of Wnt/β-catenin pathway by RAS in CKD. However, the underlying mechanisms of RAS and Wnt/β-catenin signaling interaction and their contribution to the pathogenesis of CKD have not been fully elucidated. Present study is designed to investigate the role of RAS/Wnt/β-catenin axis activation in tubulo-interstitial fibrosis and glomerulosclerosis by the cultured HK-2 and podocytes. HK-2 cells and podocytes are treated by angiotensin II (Ang II). Ang II up-regulates expression of various Wnt mRNA and active β-catenin protein in HK-2 cells and podocytes in the time- and dose-dependent manners. In addition, Ang II induces injury, oxidative stress and inflammation and impaired Nrf2 activation in HK-2 cells and podocytes. This was accompanied by up-regulations of RAS components as well as Wnt1, activated β-catenin and its target proteins. RAS/Wnt/β-catenin axis activation results in epithelial-to-mesenchymal transition in HK-2 cells and injuries podocytes. The effect of Ang II is inhibited by losartan and ICG-001, a Wnt/β-catenin inhibitor. We further found that treatment with natural products, ergone, alisol B 23-acetate and pachymic acid B inhibit extracellular matrix accumulation in HK-2 cells and attenuated podocyte injury, in part, by inhibiting Ang II induced RAS/Wnt/β-catenin axis activation. In summary, activation of RAS/Wnt/β-catenin axis results in podocytes and tubular epithelial cell, injury and up-regulations of oxidative, inflammatory and fibrotic pathways. These adverse effects are ameliorated by ergone, alisol B 23-acetate and pachymic acid B. Therefore, these natural products could be considered as novel Wnt/β-catenin signaling inhibitors and anti-fibrotic agents.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View