Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Enabling techniques for low power, high performance fractional-N frequency synthesizers

Abstract

Delta-sigma fractional-N phase-locked loops are used to generate high quality radio-frequency signals for use in wireless applications. To reduce the phase noise inherent to these systems, a digital-to-analog converter is used to cancel the error introduced by the fractional division process, however matching between the digital-to-analog converter and the phase-locked loop circuitry place a limit on the amount of phase noise reduction that can be achieved. Furthermore, circuit non-linearity results in the appearance of spurious tones in the phase-locked loop output. This dissertation outlines a calibration technique, and a digital quantization technique that provide solutions to these two problems. The calibration technique results in improved phase noise performance by adjusting the digital-to-analog converter gain, and thus providing better matching between the phase-locked loop circuitry and digital-to-analog converter. The digital quantization technique results in no spurious tones when specified non- linearity is applied to the quantizer output sequence and error. The calibration technique was implemented in an integrated circuit, which achieves state-of-the-art performance when compared to currently published phase- locked loops and allows for all circuitry to be integrated onto a single chip. Chapter 1 presents the calibration technique, as well as a theoretical analysis of the stability. Chapter 2 presents details on the digital quantization technique, and a mathematical proof of the absence of spurious tones. In chapter 3, results from an implemented circuit are presented, which verify the behaviour of the technique presented in chapter 1

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View