Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

CH4 sources estimated from atmospheric observations of CH4 and its C-13/C-12 isotopic ratios: 1. Inverse modeling of source processes

Abstract

A time-dependent inverse modeling approach that estimates the global magnitude of atmospheric methane sources from the observed spatiotemporal distribution of atmospheric CH4, C-13/C-12 isotopic ratios, and a priori estimates of the source strengths is presented. Relative to the a priori source estimates, the inverse model calls for increased CH4 flux from sources with strong spatial footprints in the tropics and Southern Hemisphere and decreases in sources in the Northern Hemisphere. The CH4 and C-13/C-12 isotopic ratio observations suggest an unusually high CH4 flux from swamps (similar to200 +/- 44 Tg CH4/yr) and biomass burning (88 +/- 18 Tg CH4/yr) with relatively low estimates of emissions from bogs (similar to20 +/- 14 Tg CH4/yr), and landfills (35 +/- 14 Tg CH4/yr). The model results support the hypothesis that the 1998 CH4 growth rate anomaly was caused in part by a large increase in CH4 production from wetlands, and indicate that wetland sources were about 40 Tg CH4/yr higher in 1998 than 1999.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View