Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Germline and Somatic Mutations in Homologous Recombination Genes Predict Platinum Response and Survival in Ovarian, Fallopian Tube, and Peritoneal Carcinomas

Abstract

Purpose

Hallmarks of germline BRCA1/2-associated ovarian carcinomas include chemosensitivity and improved survival. The therapeutic impact of somatic BRCA1/2 mutations and mutations in other homologous recombination DNA repair genes is uncertain.

Experimental design

Using targeted capture and massively parallel genomic sequencing, we assessed 390 ovarian carcinomas for germline and somatic loss-of-function mutations in 30 genes, including BRCA1, BRCA2, and 11 other genes in the homologous recombination pathway.

Results

Thirty-one percent of ovarian carcinomas had a deleterious germline (24%) and/or somatic (9%) mutation in one or more of the 13 homologous recombination genes: BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK1, CHEK2, FAM175A, MRE11A, NBN, PALB2, RAD51C, and RAD51D. Nonserous ovarian carcinomas had similar rates of homologous recombination mutations to serous carcinomas (28% vs. 31%, P = 0.6), including clear cell, endometrioid, and carcinosarcoma. The presence of germline and somatic homologous recombination mutations was highly predictive of primary platinum sensitivity (P = 0.0002) and improved overall survival (P = 0.0006), with a median overall survival of 66 months in germline homologous recombination mutation carriers, 59 months in cases with a somatic homologous recombination mutation, and 41 months for cases without a homologous recombination mutation.

Conclusions

Germline or somatic mutations in homologous recombination genes are present in almost one third of ovarian carcinomas, including both serous and nonserous histologies. Somatic BRCA1/2 mutations and mutations in other homologous recombination genes have a similar positive impact on overall survival and platinum responsiveness as germline BRCA1/2 mutations. The similar rate of homologous recombination mutations in nonserous carcinomas supports their inclusion in PARP inhibitor clinical trials.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View