Skip to main content
eScholarship
Open Access Publications from the University of California

A recirculation system for concentrating CO 2 electrolyzer products

(2024)

Electrochemical carbon dioxide reduction represents a promising path to utilize CO2 as a feedstock for generating valuable products such as fuels and chemicals. Faradaic efficiencies near 100% have been achieved for certain CO2 reduction products such as CO, but the electrolyzer outlet streams usually contain large fractions of unreacted CO2, dropping the product concentrations below 1% in many cases. The system disclosed here recycles the unreacted CO2 together with the products and flows them back into the CO2 reduction reactor, enabling much higher CO2 conversion rates without dropping the gas flow rate. However, simple recirculation is shown to accumulate significant amounts of hydrogen, impeding effective CO2 reduction. In this looped system, an electrochemical H2 pump is placed in series with the CO2 reactor, which effectively removes all the H2 from the recycled gas stream, increasing the concentrations of carbon-containing products. The system was initially tested with a CO-generating catalyst and CO concentrations above 70% were achieved in the recycled gas stream, compared to a maximum CO concentration of 8% in single-pass configuration. Results with a CO2 reactor targeting ethylene as the main product show that ethylene concentrations of at least 10% can be achieved, which is roughly 20 times higher compared to a single-pass system.

Cover page of Ultrafast Exciton Dynamics of CH3NH3PbBr3 Perovskite Nanoclusters.

Ultrafast Exciton Dynamics of CH3NH3PbBr3 Perovskite Nanoclusters.

(2024)

Exciton dynamics of perovskite nanoclusters has been investigated for the first time using femtosecond transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopy. The TA results show two photoinduced absorption signals at 420 and 461 nm and a photoinduced bleach (PB) signal at 448 nm. The analysis of the PB recovery kinetic decay and kinetic model uncovered multiple processes contributing to electron-hole recombination. The fast component (∼8 ps) is attributed to vibrational relaxation within the initial excited state, and the medium component (∼60 ps) is attributed to shallow carrier trapping. The slow component is attributed to deep carrier trapping from the initial conduction band edge (∼666 ps) and the shallow trap state (∼40 ps). The TRPL reveals longer time dynamics, with modeled lifetimes of 6.6 and 93 ns attributed to recombination through the deep trap state and direct band edge recombination, respectively. The significant role of exciton trapping processes in the dynamics indicates that these highly confined nanoclusters have defect-rich surfaces.

Cover page of Deconvolution and Analysis of the 1H NMR Spectra of Crude Reaction Mixtures

Deconvolution and Analysis of the 1H NMR Spectra of Crude Reaction Mixtures

(2024)

Nuclear magnetic resonance (NMR) spectroscopy is an important analytical technique in synthetic organic chemistry, but its integration into high-throughput experimentation workflows has been limited by the necessity of manually analyzing the NMR spectra of new chemical entities. Current efforts to automate the analysis of NMR spectra rely on comparisons to databases of reported spectra for known compounds and, therefore, are incompatible with the exploration of new chemical space. By reframing the NMR spectrum of a reaction mixture as a joint probability distribution, we have used Hamiltonian Monte Carlo Markov Chain and density functional theory to fit the predicted NMR spectra to those of crude reaction mixtures. This approach enables the deconvolution and analysis of the spectra of mixtures of compounds without relying on reported spectra. The utility of our approach to analyze crude reaction mixtures is demonstrated with the experimental spectra of reactions that generate a mixture of isomers, such as Wittig olefination and C-H functionalization reactions. The correct identification of compounds in a reaction mixture and their relative concentrations is achieved with a mean absolute error as low as 1%.

Cover page of Role of Mass Transport in Electrochemical CO2 Reduction to Methanol Using Immobilized Cobalt Phthalocyanine.

Role of Mass Transport in Electrochemical CO2 Reduction to Methanol Using Immobilized Cobalt Phthalocyanine.

(2024)

Electrochemical CO2 reduction (CO2R) using heterogenized molecular catalysts usually yields 2-electron reduction products (CO, formate). Recently, it has been reported that certain preparations of immobilized cobalt phthalocyanine (CoPc) produce methanol (MeOH), a 6-electron reduction product. Here, we demonstrate the significant role of intermediate mass transport in CoPc selectivity to methanol. We first developed a simple, physically mixed, polymer (and polyfluoroalkyl, PFAS)-free preparation of CoPc on multiwalled carbon nanotubes (MWCNTs) which can be integrated onto Au electrodes using a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) adhesion layer. After optimization of catalyst preparation and loading, methanol Faradaic efficiencies and partial current densities of 36% (±3%) and 3.8 (±0.5) mA cm-2, respectively, are achieved in the CO2-saturated aqueous electrolyte. The electrolyte flow rate has a large effect. A linear flow velocity of 8.5 cm/min produces the highest MeOH selectivity, with higher flow rates increasing CO selectivity and lower flow rates increasing the hydrogen evolution reaction, suggesting that CO is an unbound intermediate. Using a continuum multiphysics model assuming CO is the intermediate, we show qualitative agreement with the optimal inlet flow rate. Polymer binders were not required to achieve a high Faradaic efficiency for methanol using CoPc and MWCNTs. We also investigated the role of formaldehyde as an intermediate and the role of strain, but definitive conclusions could not be established.

Cover page of Reinvented: An Attosecond Chemist

Reinvented: An Attosecond Chemist

(2024)

Attosecond science requires a substantial rethinking of how to make measurements on very short timescales; how to acquire the necessary equipment, technology, and personnel; and how to build a set of laboratories for such experiments. This entails a rejuvenation of the author in many respects, in the laboratory itself, with regard to students and postdocs, and in generating funding for research. It also brings up questions of what it means to do attosecond science, and the discovery of the power of X-ray spectroscopy itself, which complements the short timescales addressed. The lessons learned, expressed in the meanderings of this autobiographical article, may be of benefit to others who try to reinvent themselves. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 75 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Cover page of Compression of a Stearic Acid Surfactant Layer on Water Investigated by Ambient Pressure X-ray Photoelectron Spectroscopy.

Compression of a Stearic Acid Surfactant Layer on Water Investigated by Ambient Pressure X-ray Photoelectron Spectroscopy.

(2024)

We present a combined Langmuir-Pockels trough and ambient pressure X-ray photoelectron spectroscopy (APXPS) study of the compression of stearic acid surfactant layers on neat water. Changes in the packing density of the molecules are directly determined from C 1s and O 1s APXPS data. The experimental data are fit with a 2D model for the stearic acid coverage. Based on the results of these proof-of-principle experiments, we discuss the remaining challenges that need to be overcome for future investigations of the role of surfactants in heterogeneous chemical reactions at liquid-vapor interfaces in combined Langmuir-Pockels trough and APXPS measurements.

Cover page of An experimental and computational view of the photoionization of diol–water clusters

An experimental and computational view of the photoionization of diol–water clusters

(2024)

In the interstellar medium, diols and other prebiotic molecules adsorb onto icy mantles surrounding dust grains. Water in the ice may affect the reactivity and photoionization of these diols. Ethylene glycol (EG), 1,2-propylene glycol, and 1,3-propylene glycol clusters with water clusters were used as a proxy to study these interactions. The diol-water clusters were generated in a continuous supersonic molecular beam, photoionized by synchrotron-based vacuum ultraviolet light from the Advanced Light Source, and subsequently detected by reflectron time-of-flight mass spectrometry. The appearance energies for the detected clusters were determined from the mass spectra, collected at increasing photon energy. Clusters of both diol fragments and unfragmented diols with water were detected. The lowest energy geometry optimized conformers for the observed EG-water clusters and EG fragment-water clusters have been visualized using density functional theory (DFT), providing insight into hydrogen bonding networks and how these affect fragmentation and appearance energy. As the number of water molecules clustered around EG fragments (m/z 31 and 32) increased, the appearance energy for the cluster decreased, indicating a stabilization by water. This trend was supported by DFT calculations. Fragment clusters from 1,2-propylene glycol exhibited a similar trend, but with a smaller energy decrease, and no trend was observed from 1,3-propylene glycol. We discuss and suggest that the reactivity and photoionization of diols in the presence of water depend on the size of the diol, the location of the hydroxyl group, and the number of waters clustered around the diol.

Cover page of Chemical Bonding and the Role of Node-Induced Electron Confinement

Chemical Bonding and the Role of Node-Induced Electron Confinement

(2024)

The chemical bond is the cornerstone of chemistry, providing a conceptual framework to understand and predict the behavior of molecules in complex systems. However, the fundamental origin of chemical bonding remains controversial and has been responsible for fierce debate over the past century. Here, we present a unified theory of bonding, using a separation of electron delocalization effects from orbital relaxation to identify three mechanisms [node-induced confinement (typically associated with Pauli repulsion, though more general), orbital contraction, and polarization] that each modulate kinetic energy during bond formation. Through analysis of a series of archetypal bonds, we show that an exquisite balance of energy-lowering delocalizing and localizing effects are dictated simply by atomic electron configurations, nodal structure, and electronegativities. The utility of this unified bonding theory is demonstrated by its application to explain observed trends in bond strengths throughout the periodic table, including main group and transition metal elements.

  • 1 supplemental PDF
Cover page of Solving Vibronic Dynamics in Electron Continuum.

Solving Vibronic Dynamics in Electron Continuum.

(2024)

We present a general two-dimensional model of conical intersection between metastable states that are vibronically coupled not only directly but also indirectly through a virtual electron in the autodetachment continuum. This model is used as a test ground for the design and comparison of iterative solvers for resonance dynamics in low-energy electron-molecule collisions. Two Krylov-subspace methods with various preconditioning schemes are compared. To demonstrate the applicability of the proposed methods on even larger models, we also test the performance of one of the methods on a recent model of vibrational excitation of CO2 by electron impact based on three vibronically coupled discrete states in continuum (Renner-Teller doublet of shape resonances coupled to a sigma virtual state) including four vibrational degrees of freedom. Two-dimensional electron energy-loss spectra resulting from electron-molecule scattering within the models are briefly discussed.